[doc] update hybrid parallelism doc (#3770)

This commit is contained in:
jiangmingyan
2023-05-18 14:16:13 +08:00
committed by GitHub
parent 15024e40d9
commit 48bd056761
8 changed files with 41 additions and 39 deletions

View File

@@ -8,7 +8,7 @@ Author: Zhengda Bian, Yongbin Li
- [1D Tensor Parallelism](./1D_tensor_parallel.md)
**Example Code**
- [ColossalAI-Examples - 2D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_2d.py)
- [ColossalAI-Examples - 2D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
**Related Paper**
- [An Efficient 2D Method for Training Super-Large Deep Learning Models](https://arxiv.org/pdf/2104.05343.pdf)
@@ -22,33 +22,33 @@ Let's still take a linear layer $Y = XA$ as an example.
Given $P=q\times q$ processors (necessary condition), e.g. $q=2$, we split both the input $X$ and weight $A$ into
$$
\left[\begin{matrix} X_{10} & X_{11} \\ X_{00} & X_{01} \end{matrix} \right]
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right]
\text{~and~}
\left[\begin{matrix} A_{10} & A_{11} \\ A_{00} & A_{01} \end{matrix} \right].
\left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right].
$$
The calculation includes $q$ steps. When $t=1$, $X_{i0}$ is broadcasted in its row, and $A_{0j}$ is broadcasted in its column. So, we have
$$
\left[\begin{matrix} X_{10},A_{00} & X_{10},A_{01} \\ X_{00},A_{00} & X_{00},A_{01} \end{matrix} \right].
\left[\begin{matrix} X_{00},A_{00} & X_{00},A_{01} \\ X_{10},A_{00} & X_{10},A_{01} \end{matrix} \right].
$$
Then we multiply $X_{i0}$ and $A_{0j}$ on each processor $(i, j)$ as
$$
\left[\begin{matrix} X_{10}A_{00} & X_{10}A_{01} \\ X_{00}A_{00} & X_{00}A_{01} \end{matrix} \right] (1).
\left[\begin{matrix} X_{00}A_{00} & X_{00}A_{01} \\ X_{10}A_{00} & X_{10}A_{01} \end{matrix} \right] (1).
$$
Similarly, when $t=2$, $X_{i1}$ is broadcasted in its row, $A_{1j}$ is broadcasted in its column, and we multiply them as
$$
\left[\begin{matrix} X_{11}A_{10} & X_{11}A_{11} \\ X_{01}A_{10} & X_{01}A_{11} \end{matrix} \right] (2).
\left[\begin{matrix} X_{01}A_{10} & X_{01}A_{11} \\ X_{11}A_{10} & X_{11}A_{11} \end{matrix} \right] (2).
$$
By adding $(1)$ and $(2)$ up, we have
$$
Y = XA = \left[\begin{matrix} X_{10}A_{00}+X_{11}A_{10} & X_{10}A_{01}+X_{11}A_{11} \\ X_{00}A_{00}+X_{01}A_{10} & X_{00}A_{01}+X_{01}A_{11} \end{matrix} \right].
Y = XA = \left[\begin{matrix} X_{00}A_{00}+X_{01}A_{10} & X_{00}A_{01}+X_{01}A_{11} \\ X_{10}A_{00}+X_{11}A_{10} & X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right].
$$
## Efficiency