mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-21 01:24:04 +00:00
[doc] update hybrid parallelism doc (#3770)
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
- [1D 张量并行](./1D_tensor_parallel.md)
|
||||
|
||||
**示例代码**
|
||||
- [ColossalAI-Examples - 2D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_2d.py)
|
||||
- [ColossalAI-Examples - 2D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**相关论文**
|
||||
- [An Efficient 2D Method for Training Super-Large Deep Learning Models](https://arxiv.org/pdf/2104.05343.pdf)
|
||||
@@ -22,33 +22,33 @@
|
||||
给定 $P=q\times q$ 个处理器(必要条件), 如 $q=2$, 我们把输入 $X$ 和权重A $A$ 都划分为
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10} & X_{11} \\ X_{00} & X_{01} \end{matrix} \right]
|
||||
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right]
|
||||
\text{~and~}
|
||||
\left[\begin{matrix} A_{10} & A_{11} \\ A_{00} & A_{01} \end{matrix} \right]。
|
||||
\left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
该计算包括 $q$ 步。 当 $t=1$ 时, $X_{i0}$ 在其行中被广播, 而 $A_{0j}$ 在其列中被广播。因此,我们有
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10},A_{00} & X_{10},A_{01} \\ X_{00},A_{00} & X_{00},A_{01} \end{matrix} \right]。
|
||||
\left[\begin{matrix} X_{00},A_{00} & X_{00},A_{01} \\ X_{10},A_{00} & X_{10},A_{01} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
然后我们在每个处理器 $(i, j)$ 上将 $X_{i0}$ 和 $A_{0j}$ 相乘为
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10}A_{00} & X_{10}A_{01} \\ X_{00}A_{00} & X_{00}A_{01} \end{matrix} \right] (1)。
|
||||
\left[\begin{matrix} X_{00}A_{00} & X_{00}A_{01} \\ X_{10}A_{00} & X_{10}A_{01} \end{matrix} \right] (1).
|
||||
$$
|
||||
|
||||
同样,当 $t=2$ 时, $X_{i1}$ 在其行中被广播, $A_{1j}$ 在其列中被广播, 我们将它们相乘为
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{11}A_{10} & X_{11}A_{11} \\ X_{01}A_{10} & X_{01}A_{11} \end{matrix} \right] (2)。
|
||||
\left[\begin{matrix} X_{01}A_{10} & X_{01}A_{11} \\ X_{11}A_{10} & X_{11}A_{11} \end{matrix} \right] (2).
|
||||
$$
|
||||
|
||||
通过将 $(1)$ 和 $(2)$ 相加,我们有
|
||||
|
||||
$$
|
||||
Y = XA = \left[\begin{matrix} X_{10}A_{00}+X_{11}A_{10} & X_{10}A_{01}+X_{11}A_{11} \\ X_{00}A_{00}+X_{01}A_{10} & X_{00}A_{01}+X_{01}A_{11} \end{matrix} \right]。
|
||||
Y = XA = \left[\begin{matrix} X_{00}A_{00}+X_{01}A_{10} & X_{00}A_{01}+X_{01}A_{11} \\ X_{10}A_{00}+X_{11}A_{10} & X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
## 效率
|
||||
|
Reference in New Issue
Block a user