mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-21 09:29:47 +00:00
[doc] update hybrid parallelism doc (#3770)
This commit is contained in:
@@ -9,7 +9,7 @@
|
||||
- [2D 张量并行](./2D_tensor_parallel.md)
|
||||
|
||||
**示例代码**
|
||||
- [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_2p5d.py)
|
||||
- [ColossalAI-Examples - 2.5D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
|
||||
**相关论文**
|
||||
- [2.5-dimensional distributed model training](https://arxiv.org/pdf/2105.14500.pdf)
|
||||
@@ -22,29 +22,29 @@
|
||||
给定 $P=q \times q \times d$ 个处理器(必要条件), 如 $q=d=2$, 我们把输入 $X$ 划分为 $d\times q$ 行和 $q$ 列
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{30} & X_{31} \\ X_{20} & X_{21} \\ X_{10} & X_{11} \\ X_{00} & X_{01}\end{matrix} \right],
|
||||
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \\ X_{20} & X_{21} \\ X_{30} & X_{31}\end{matrix} \right],
|
||||
$$
|
||||
它可以被重塑为 $d$ 层
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} X_{10} & X_{11} \\ X_{00} & X_{01} \end{matrix} \right] \text{~and~}\left[\begin{matrix} X_{30} & X_{31} \\ X_{20} & X_{21} \end{matrix} \right].
|
||||
\left[\begin{matrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{matrix} \right] \text{~and~}\left[\begin{matrix} X_{20} & X_{21} \\ X_{30} & X_{31} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
另外,权重 $A$ 被分割为
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} A_{10} & A_{11} \\ A_{00} & A_{01} \end{matrix} \right].
|
||||
\left[\begin{matrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
对于 $X$ 相关的每一层, 我们使用SUMMA算法将 $X$ 与 $A$ 相乘。
|
||||
然后,我们得到输出
|
||||
|
||||
$$
|
||||
\left[\begin{matrix} Y_{10}=X_{10}A_{00}+X_{11}A_{10} & Y_{11}=X_{10}A_{01}+X_{11}A_{11} \\ Y_{00}=X_{00}A_{00}+X_{01}A_{10} & Y_{01}=X_{00}A_{01}+X_{01}A_{11} \end{matrix} \right]
|
||||
\left[\begin{matrix} Y_{00}=X_{00}A_{00}+X_{01}A_{10} & Y_{01}=X_{00}A_{01}+X_{01}A_{11} \\ Y_{10}=X_{10}A_{00}+X_{11}A_{10} & Y_{11}=X_{10}A_{01}+X_{11}A_{11} \end{matrix} \right]
|
||||
\text{~and~}
|
||||
$$
|
||||
$$
|
||||
\left[\begin{matrix} Y_{30}=X_{30}A_{00}+X_{31}A_{10} & Y_{31}=X_{30}A_{01}+X_{31}A_{11} \\ Y_{20}=X_{20}A_{00}+X_{21}A_{10} & Y_{21}=X_{20}A_{01}+X_{21}A_{11} \end{matrix} \right].
|
||||
\left[\begin{matrix} Y_{20}=X_{20}A_{00}+X_{21}A_{10} & Y_{21}=X_{20}A_{01}+X_{21}A_{11} \\ Y_{30}=X_{30}A_{00}+X_{31}A_{10} & Y_{31}=X_{30}A_{01}+X_{31}A_{11} \end{matrix} \right].
|
||||
$$
|
||||
|
||||
## 效率
|
||||
|
Reference in New Issue
Block a user