mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 12:30:42 +00:00
[autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it. 1. support some evoformer's op in fx 2. support evoformer test 3. add repos for test code
This commit is contained in:
@@ -48,9 +48,7 @@ def _gen_chunk_slice_dim(chunk_dim: int, chunk_indice_name: str, shape: List) ->
|
||||
return new_shape
|
||||
|
||||
|
||||
def _gen_loop_start(
|
||||
chunk_input: List[Node], chunk_output: Node, chunk_ouput_dim: int, chunk_size=2
|
||||
) -> str:
|
||||
def _gen_loop_start(chunk_input: List[Node], chunk_output: Node, chunk_ouput_dim: int, chunk_size=2) -> str:
|
||||
"""
|
||||
Generate chunk loop start
|
||||
|
||||
@@ -72,9 +70,8 @@ def _gen_loop_start(
|
||||
out_shape = get_node_shape(chunk_output)
|
||||
out_str = str(list(out_shape))
|
||||
context = (
|
||||
"chunk_result = torch.empty(%s, dtype=%s.dtype, device=%s.device); chunk_size = %d\nfor chunk_idx in range"
|
||||
% (out_str, input_node.name, input_node.name, chunk_size)
|
||||
)
|
||||
"chunk_result = torch.empty(%s, dtype=%s.dtype, device=%s.device); chunk_size = %d\nfor chunk_idx in range" %
|
||||
(out_str, input_node.name, input_node.name, chunk_size))
|
||||
context += "(0, %d, chunk_size):\n" % (out_shape[chunk_ouput_dim])
|
||||
return context
|
||||
|
||||
@@ -105,26 +102,17 @@ def _gen_loop_end(
|
||||
chunk_outputs_name = chunk_outputs.name
|
||||
chunk_outputs_idx = find_idx_by_name(chunk_outputs_name, node_list)
|
||||
chunk_output_shape = chunk_outputs.meta["tensor_meta"].shape
|
||||
chunk_slice = _gen_chunk_slice_dim(
|
||||
chunk_outputs_dim, "chunk_idx", chunk_output_shape
|
||||
)
|
||||
chunk_slice = _gen_chunk_slice_dim(chunk_outputs_dim, "chunk_idx", chunk_output_shape)
|
||||
context = " chunk_result%s = %s; %s = None\n" % (
|
||||
chunk_slice,
|
||||
chunk_outputs_name,
|
||||
chunk_outputs_name,
|
||||
)
|
||||
context += (
|
||||
chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None"
|
||||
)
|
||||
context += (chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None")
|
||||
|
||||
# determine if its the last use for chunk input
|
||||
for chunk_input in chunk_inputs + chunk_non_compute_inputs:
|
||||
if all(
|
||||
[
|
||||
find_idx_by_name(user.name, node_list) <= chunk_outputs_idx
|
||||
for user in chunk_input.users.keys()
|
||||
]
|
||||
):
|
||||
if all([find_idx_by_name(user.name, node_list) <= chunk_outputs_idx for user in chunk_input.users.keys()]):
|
||||
context += "; %s = None" % chunk_input.name
|
||||
|
||||
context += "\n"
|
||||
@@ -171,17 +159,10 @@ def _replace_ones_like(
|
||||
chunk_dim = chunk_infos[region_idx]["node_chunk_dim"][meta_node]["chunk_dim"]
|
||||
if get_node_shape(meta_node)[chunk_dim] != 1:
|
||||
source_node = meta_node.args[0].args[0]
|
||||
if (
|
||||
source_node not in chunk_infos[region_idx]["node_chunk_dim"]
|
||||
or chunk_infos[region_idx]["node_chunk_dim"][source_node]["chunk_dim"]
|
||||
is None
|
||||
):
|
||||
chunk_slice = _gen_chunk_slice_dim(
|
||||
chunk_dim, "chunk_idx", get_node_shape(node)
|
||||
)
|
||||
body[-1] = _replace_name(
|
||||
body[-1], node.args[0].name, node.args[0].name + chunk_slice
|
||||
)
|
||||
if (source_node not in chunk_infos[region_idx]["node_chunk_dim"]
|
||||
or chunk_infos[region_idx]["node_chunk_dim"][source_node]["chunk_dim"] is None):
|
||||
chunk_slice = _gen_chunk_slice_dim(chunk_dim, "chunk_idx", get_node_shape(node))
|
||||
body[-1] = _replace_name(body[-1], node.args[0].name, node.args[0].name + chunk_slice)
|
||||
return body
|
||||
|
||||
|
||||
@@ -198,12 +179,8 @@ def _replace_input_node(
|
||||
for input_node_idx, input_node in enumerate(chunk_inputs[region_idx]):
|
||||
for idx, dim in chunk_inputs_dim[region_idx][input_node_idx].items():
|
||||
if idx == node_idx:
|
||||
chunk_slice = _gen_chunk_slice_dim(
|
||||
dim[0], "chunk_idx", get_node_shape(input_node)
|
||||
)
|
||||
body[-1] = _replace_name(
|
||||
body[-1], input_node.name, input_node.name + chunk_slice
|
||||
)
|
||||
chunk_slice = _gen_chunk_slice_dim(dim[0], "chunk_idx", get_node_shape(input_node))
|
||||
body[-1] = _replace_name(body[-1], input_node.name, input_node.name + chunk_slice)
|
||||
return body
|
||||
|
||||
|
||||
@@ -236,14 +213,10 @@ def emit_code_with_chunk(
|
||||
chunk_ends = [i["region"][1] for i in chunk_infos]
|
||||
|
||||
# chunk inputs
|
||||
chunk_inputs = [i["inputs"] for i in chunk_infos] # input with chunk
|
||||
chunk_inputs_non_chunk = [
|
||||
i["inputs_non_chunk"] for i in chunk_infos
|
||||
] # input without chunk
|
||||
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_infos] # input chunk dim
|
||||
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
|
||||
j.name for i in chunk_inputs_non_chunk for j in i
|
||||
]
|
||||
chunk_inputs = [i["inputs"] for i in chunk_infos] # input with chunk
|
||||
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos] # input without chunk
|
||||
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_infos] # input chunk dim
|
||||
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [j.name for i in chunk_inputs_non_chunk for j in i]
|
||||
|
||||
# chunk outputs
|
||||
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
|
||||
@@ -267,23 +240,16 @@ def emit_code_with_chunk(
|
||||
chunk_outputs[region_idx],
|
||||
chunk_outputs_dim[region_idx],
|
||||
chunk_infos[region_idx]["chunk_size"],
|
||||
)
|
||||
)
|
||||
))
|
||||
|
||||
if within_chunk_region:
|
||||
emit_node_func(node, body)
|
||||
# replace input var with chunk var
|
||||
body = _replace_input_node(
|
||||
chunk_inputs, region_idx, chunk_inputs_dim, node_idx, body
|
||||
)
|
||||
body = _replace_input_node(chunk_inputs, region_idx, chunk_inputs_dim, node_idx, body)
|
||||
# ones like
|
||||
body = _replace_ones_like(
|
||||
search_chunk, chunk_infos, region_idx, node_idx, node, body
|
||||
)
|
||||
body = _replace_ones_like(search_chunk, chunk_infos, region_idx, node_idx, node, body)
|
||||
# reassgin reshape size
|
||||
body[-1] = _replace_reshape_size(
|
||||
body[-1], node.name, chunk_infos[region_idx]["reshape_size"]
|
||||
)
|
||||
body[-1] = _replace_reshape_size(body[-1], node.name, chunk_infos[region_idx]["reshape_size"])
|
||||
body[-1] = " " + body[-1]
|
||||
delete_unused_value_func(node, body, chunk_inputs_names)
|
||||
else:
|
||||
@@ -300,8 +266,7 @@ def emit_code_with_chunk(
|
||||
chunk_outputs[region_idx],
|
||||
chunk_outputs_dim[region_idx],
|
||||
node_list,
|
||||
)
|
||||
)
|
||||
))
|
||||
within_chunk_region = False
|
||||
|
||||
node_idx += 1
|
||||
@@ -310,18 +275,14 @@ def emit_code_with_chunk(
|
||||
if CODEGEN_AVAILABLE:
|
||||
|
||||
class AutoChunkCodeGen(CodeGen):
|
||||
|
||||
def __init__(self, meta_graph, max_memory=None, print_mem=False):
|
||||
super().__init__()
|
||||
self.meta_graph = meta_graph
|
||||
self.max_memory = max_memory
|
||||
self.meta_node = list(meta_graph.graph.nodes)
|
||||
# find the chunk regions
|
||||
self.search_chunk = SearchChunk(meta_graph, max_memory, print_mem)
|
||||
self.chunk_infos = self.search_chunk.search_region()
|
||||
|
||||
def _gen_python_code(
|
||||
self, nodes, root_module: str, namespace: _Namespace
|
||||
) -> PythonCode:
|
||||
def _gen_python_code(self, nodes, root_module: str, namespace: _Namespace) -> PythonCode:
|
||||
free_vars: List[str] = []
|
||||
body: List[str] = []
|
||||
globals_: Dict[str, Any] = {}
|
||||
@@ -338,9 +299,7 @@ if CODEGEN_AVAILABLE:
|
||||
|
||||
Returns: the global name that should be used to reference 'obj' in generated source.
|
||||
"""
|
||||
if (
|
||||
_is_from_torch(obj) and obj != torch.device
|
||||
): # to support registering torch.device
|
||||
if (_is_from_torch(obj) and obj != torch.device): # to support registering torch.device
|
||||
# HACK: workaround for how torch custom ops are registered. We
|
||||
# can't import them like normal modules so they must retain their
|
||||
# fully qualified name.
|
||||
@@ -356,9 +315,7 @@ if CODEGEN_AVAILABLE:
|
||||
return global_name
|
||||
|
||||
# set _custom_builtins here so that we needn't import colossalai in forward
|
||||
_custom_builtins["colossalai"] = _CustomBuiltin(
|
||||
"import colossalai", colossalai
|
||||
)
|
||||
_custom_builtins["colossalai"] = _CustomBuiltin("import colossalai", colossalai)
|
||||
|
||||
# Pre-fill the globals table with registered builtins.
|
||||
for name, (_, obj) in _custom_builtins.items():
|
||||
@@ -394,9 +351,8 @@ if CODEGEN_AVAILABLE:
|
||||
# Common case: this is a regular module name like 'foo.bar.baz'
|
||||
return add_global(typename, o)
|
||||
|
||||
def _format_args(
|
||||
args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
|
||||
) -> str:
|
||||
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str:
|
||||
|
||||
def _get_repr(arg):
|
||||
# Handle NamedTuples (if it has `_fields`) via add_global.
|
||||
if isinstance(arg, tuple) and hasattr(arg, "_fields"):
|
||||
@@ -444,26 +400,18 @@ if CODEGEN_AVAILABLE:
|
||||
nodes_to_delete = user_to_last_uses.get(user, [])
|
||||
nodes_to_delete = [i for i in nodes_to_delete if i.name not in to_keep]
|
||||
if len(nodes_to_delete):
|
||||
to_delete_str = " = ".join(
|
||||
[repr(n) for n in nodes_to_delete] + ["None"]
|
||||
)
|
||||
to_delete_str = " = ".join([repr(n) for n in nodes_to_delete] + ["None"])
|
||||
body.append(f"; {to_delete_str}\n")
|
||||
else:
|
||||
body.append("\n")
|
||||
|
||||
# NOTE: we add a variable to distinguish body and ckpt_func
|
||||
def emit_node(node: Node, body):
|
||||
maybe_type_annotation = (
|
||||
"" if node.type is None else f" : {type_repr(node.type)}"
|
||||
)
|
||||
maybe_type_annotation = ("" if node.type is None else f" : {type_repr(node.type)}")
|
||||
if node.op == "placeholder":
|
||||
assert isinstance(node.target, str)
|
||||
maybe_default_arg = (
|
||||
"" if not node.args else f" = {repr(node.args[0])}"
|
||||
)
|
||||
free_vars.append(
|
||||
f"{node.target}{maybe_type_annotation}{maybe_default_arg}"
|
||||
)
|
||||
maybe_default_arg = ("" if not node.args else f" = {repr(node.args[0])}")
|
||||
free_vars.append(f"{node.target}{maybe_type_annotation}{maybe_default_arg}")
|
||||
raw_name = node.target.replace("*", "")
|
||||
if raw_name != repr(node):
|
||||
body.append(f"{repr(node)} = {raw_name}\n")
|
||||
@@ -472,68 +420,46 @@ if CODEGEN_AVAILABLE:
|
||||
assert isinstance(node.target, str)
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}"
|
||||
f"({_format_args(node.args[1:], node.kwargs)})"
|
||||
)
|
||||
f"({_format_args(node.args[1:], node.kwargs)})")
|
||||
return
|
||||
elif node.op == "call_function":
|
||||
assert callable(node.target)
|
||||
# pretty print operators
|
||||
if (
|
||||
node.target.__module__ == "_operator"
|
||||
and node.target.__name__ in magic_methods
|
||||
):
|
||||
if (node.target.__module__ == "_operator" and node.target.__name__ in magic_methods):
|
||||
assert isinstance(node.args, tuple)
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = "
|
||||
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}"
|
||||
)
|
||||
body.append(f"{repr(node)}{maybe_type_annotation} = "
|
||||
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}")
|
||||
return
|
||||
|
||||
# pretty print inplace operators; required for jit.script to work properly
|
||||
# not currently supported in normal FX graphs, but generated by torchdynamo
|
||||
if (
|
||||
node.target.__module__ == "_operator"
|
||||
and node.target.__name__ in inplace_methods
|
||||
):
|
||||
body.append(
|
||||
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; "
|
||||
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}"
|
||||
)
|
||||
if (node.target.__module__ == "_operator" and node.target.__name__ in inplace_methods):
|
||||
body.append(f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; "
|
||||
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}")
|
||||
return
|
||||
|
||||
qualified_name = _get_qualified_name(node.target)
|
||||
global_name = add_global(qualified_name, node.target)
|
||||
# special case for getattr: node.args could be 2-argument or 3-argument
|
||||
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
|
||||
if (
|
||||
global_name == "getattr"
|
||||
and isinstance(node.args, tuple)
|
||||
and isinstance(node.args[1], str)
|
||||
and node.args[1].isidentifier()
|
||||
and len(node.args) == 2
|
||||
):
|
||||
if (global_name == "getattr" and isinstance(node.args, tuple) and isinstance(node.args[1], str)
|
||||
and node.args[1].isidentifier() and len(node.args) == 2):
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}"
|
||||
)
|
||||
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}")
|
||||
return
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})"
|
||||
)
|
||||
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})")
|
||||
if node.meta.get("is_wrapped", False):
|
||||
wrapped_fns.setdefault(global_name)
|
||||
return
|
||||
elif node.op == "call_module":
|
||||
assert isinstance(node.target, str)
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = "
|
||||
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})"
|
||||
)
|
||||
body.append(f"{repr(node)}{maybe_type_annotation} = "
|
||||
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})")
|
||||
return
|
||||
elif node.op == "get_attr":
|
||||
assert isinstance(node.target, str)
|
||||
body.append(
|
||||
f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}"
|
||||
)
|
||||
body.append(f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}")
|
||||
return
|
||||
elif node.op == "output":
|
||||
if node.type is not None:
|
||||
@@ -564,9 +490,7 @@ if CODEGEN_AVAILABLE:
|
||||
|
||||
if len(wrapped_fns) > 0:
|
||||
wrap_name = add_global("wrap", torch.fx.wrap)
|
||||
wrap_stmts = "\n".join(
|
||||
[f'{wrap_name}("{name}")' for name in wrapped_fns]
|
||||
)
|
||||
wrap_stmts = "\n".join([f'{wrap_name}("{name}")' for name in wrapped_fns])
|
||||
else:
|
||||
wrap_stmts = ""
|
||||
|
||||
|
Reference in New Issue
Block a user