[hotfix] fix initialize bug with zero (#442)

This commit is contained in:
Jiarui Fang
2022-03-17 13:16:22 +08:00
committed by GitHub
parent 725a39f4bd
commit 496cbb0760
12 changed files with 87 additions and 58 deletions

View File

@@ -11,17 +11,13 @@ from .apex_amp import convert_to_apex_amp
from .naive_amp import convert_to_naive_amp
def convert_to_amp(model: nn.Module,
optimizer: Optimizer,
criterion: _Loss,
mode: AMP_TYPE,
amp_config: Config = None):
def convert_to_amp(model: nn.Module, optimizer: Optimizer, criterion: _Loss, mode: AMP_TYPE, amp_config: Config = None):
"""A helper function to wrap training components with Torch AMP modules
:param model: your model object
:type model: :class:`torch.nn.Module`
:param optimizer: your optimizer object
:type optimizer: :class:`torch.optim.Optimzer`
:type optimizer: :class:`torch.optim.Optimizer`
:param criterion: your loss function object
:type criterion: :class:`torch.nn.modules.loss._Loss`
:param mode: amp mode

View File

@@ -3,15 +3,13 @@ import torch.nn as nn
from torch.optim import Optimizer
def convert_to_apex_amp(model: nn.Module,
optimizer: Optimizer,
amp_config):
def convert_to_apex_amp(model: nn.Module, optimizer: Optimizer, amp_config):
"""A helper function to wrap training components with Apex AMP modules
:param model: your model object
:type model: :class:`torch.nn.Module`
:param optimizer: your optimizer object
:type optimizer: :class:`torch.optim.Optimzer`
:type optimizer: :class:`torch.optim.Optimizer`
:param amp_config: configuration for nvidia apex
:type amp_config: :class:`colossalai.context.Config` or dict

View File

@@ -12,7 +12,7 @@ def convert_to_naive_amp(model: nn.Module, optimizer: Optimizer, amp_config):
:param model: your model object
:type model: :class:`torch.nn.Module`
:param optimizer: your optimizer object
:type optimizer: :class:`torch.optim.Optimzer`
:type optimizer: :class:`torch.optim.Optimizer`
:param amp_config: configuration for naive mode amp
:type amp_config: :class:`colossalai.context.Config` or dict

View File

@@ -15,7 +15,7 @@ def convert_to_torch_amp(model: nn.Module,
:param model: your model object
:type model: :class:`torch.nn.Module`
:param optimizer: your optimizer object
:type optimizer: :class:`torch.optim.Optimzer`
:type optimizer: :class:`torch.optim.Optimizer`
:param criterion: your loss function object
:type criterion: :class:`torch.nn.modules.loss._Loss`, optional
:param amp_config: configuration for different amp modes

View File

@@ -268,6 +268,7 @@ def initialize(model: Union[Callable, nn.Module],
if verbose:
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
# zero
use_zero = hasattr(gpc.config, 'zero')
if use_zero:
zero_cfg = gpc.config.get('zero', None)
@@ -275,10 +276,13 @@ def initialize(model: Union[Callable, nn.Module],
cfg_ = zero_cfg.copy()
else:
cfg_ = {}
optimizer_config = zero_cfg.get('optimzer', None)
model, optimizer = convert_to_zero_v2(model_builder=model, optimizer_config=optimizer_config)
optimizer_config = zero_cfg.get('optimizer_config', None)
model_config = zero_cfg.get('model_config', None)
model, optimizer = convert_to_zero_v2(model_builder=model,
model_config=model_config,
optimizer_config=optimizer_config)
logger.info("Initializing ZeRO model and optimzer finished!", ranks=[0])
logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0])
#FIXME() throw a warning if using zero with MP
if gpc.get_world_size(ParallelMode.MODEL) > 1:
logger.warning("ZeRO currently has not been tested with model parallelism.", ranks=[0])
@@ -289,6 +293,11 @@ def initialize(model: Union[Callable, nn.Module],
elif isinstance(model, Callable):
model = model().to(get_current_device())
# optimizer maybe a optimizer_cls
logger.warning("Initializing an non ZeRO model with optimizer class")
if isinstance(optimizer, Callable):
optimizer = optimizer(model.parameters())
if not moe_env.is_initialized() and not use_zero:
if is_using_sequence():
sync_model_param(model, ParallelMode.SEQUENCE_DP)

View File

@@ -1,4 +1,3 @@
import imp
import torch
from colossalai.utils import get_current_device

View File

@@ -17,7 +17,7 @@ from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
def convert_to_zero_v2(model_builder: Callable, optimizer_config) -> (ShardedModelV2, ShardedOptimizerV2):
def convert_to_zero_v2(model_builder: Callable, model_config, optimizer_config) -> (ShardedModelV2, ShardedOptimizerV2):
"""
A helper function to integrate the model and optimizer with ZeRO optimizer and off-loading
@@ -35,28 +35,26 @@ def convert_to_zero_v2(model_builder: Callable, optimizer_config) -> (ShardedMod
# FIXME() pass shard strategy from config
shard_strategy = TensorShardStrategy()
logger.info(f'optimizer_config is {optimizer_config}')
if optimizer_config is None:
optimizer_config = dict()
logger.info(f'model_config is {model_config}')
if model_config is None:
model_config = dict()
if isinstance(model_builder, nn.Module):
model = model_builder
elif isinstance(model_builder, Callable):
with ZeroInitContext(convert_fp16='fp16' in gpc.config,
target_device=torch.cuda.current_device(),
shard_strategy=shard_strategy,
shard_param=True):
shard_param=model_config.get('shard_param', True)):
model = model_builder()
else:
raise TypeError(f"convert_to_zero_v2 dose not support model_builder of type {type(convert_to_zero_v2)}")
zero_model = ShardedModelV2(model, shard_strategy=shard_strategy)
optimizer_class = optimizer_config.get('optimizer_type', None)
if optimizer_class is None:
raise RuntimeError("Set optimizer_class in zero_config")
logger.info(f'optimizer class is {optimizer_class}')
cfg = optimizer_config.get('optimizer_config', None)
logger.info(f'optimizer_config is {cfg}')
zero_optimizer = ShardedOptimizerV2(zero_model, optimizer_class, **optimizer_config.get('optimizer_config', None))
zero_model = ShardedModelV2(model, shard_strategy=shard_strategy, **model_config)
zero_optimizer = ShardedOptimizerV2(zero_model, **optimizer_config)
return zero_model, zero_optimizer

View File

@@ -1,5 +1,4 @@
import functools
from asyncio.log import logger
from collections import OrderedDict
from typing import Any, Optional