mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 19:13:01 +00:00
[hotfix] fix initialize bug with zero (#442)
This commit is contained in:
@@ -11,17 +11,13 @@ from .apex_amp import convert_to_apex_amp
|
||||
from .naive_amp import convert_to_naive_amp
|
||||
|
||||
|
||||
def convert_to_amp(model: nn.Module,
|
||||
optimizer: Optimizer,
|
||||
criterion: _Loss,
|
||||
mode: AMP_TYPE,
|
||||
amp_config: Config = None):
|
||||
def convert_to_amp(model: nn.Module, optimizer: Optimizer, criterion: _Loss, mode: AMP_TYPE, amp_config: Config = None):
|
||||
"""A helper function to wrap training components with Torch AMP modules
|
||||
|
||||
:param model: your model object
|
||||
:type model: :class:`torch.nn.Module`
|
||||
:param optimizer: your optimizer object
|
||||
:type optimizer: :class:`torch.optim.Optimzer`
|
||||
:type optimizer: :class:`torch.optim.Optimizer`
|
||||
:param criterion: your loss function object
|
||||
:type criterion: :class:`torch.nn.modules.loss._Loss`
|
||||
:param mode: amp mode
|
||||
|
@@ -3,15 +3,13 @@ import torch.nn as nn
|
||||
from torch.optim import Optimizer
|
||||
|
||||
|
||||
def convert_to_apex_amp(model: nn.Module,
|
||||
optimizer: Optimizer,
|
||||
amp_config):
|
||||
def convert_to_apex_amp(model: nn.Module, optimizer: Optimizer, amp_config):
|
||||
"""A helper function to wrap training components with Apex AMP modules
|
||||
|
||||
:param model: your model object
|
||||
:type model: :class:`torch.nn.Module`
|
||||
:param optimizer: your optimizer object
|
||||
:type optimizer: :class:`torch.optim.Optimzer`
|
||||
:type optimizer: :class:`torch.optim.Optimizer`
|
||||
:param amp_config: configuration for nvidia apex
|
||||
:type amp_config: :class:`colossalai.context.Config` or dict
|
||||
|
||||
|
@@ -12,7 +12,7 @@ def convert_to_naive_amp(model: nn.Module, optimizer: Optimizer, amp_config):
|
||||
:param model: your model object
|
||||
:type model: :class:`torch.nn.Module`
|
||||
:param optimizer: your optimizer object
|
||||
:type optimizer: :class:`torch.optim.Optimzer`
|
||||
:type optimizer: :class:`torch.optim.Optimizer`
|
||||
:param amp_config: configuration for naive mode amp
|
||||
:type amp_config: :class:`colossalai.context.Config` or dict
|
||||
|
||||
|
@@ -15,7 +15,7 @@ def convert_to_torch_amp(model: nn.Module,
|
||||
:param model: your model object
|
||||
:type model: :class:`torch.nn.Module`
|
||||
:param optimizer: your optimizer object
|
||||
:type optimizer: :class:`torch.optim.Optimzer`
|
||||
:type optimizer: :class:`torch.optim.Optimizer`
|
||||
:param criterion: your loss function object
|
||||
:type criterion: :class:`torch.nn.modules.loss._Loss`, optional
|
||||
:param amp_config: configuration for different amp modes
|
||||
|
@@ -268,6 +268,7 @@ def initialize(model: Union[Callable, nn.Module],
|
||||
if verbose:
|
||||
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
|
||||
|
||||
# zero
|
||||
use_zero = hasattr(gpc.config, 'zero')
|
||||
if use_zero:
|
||||
zero_cfg = gpc.config.get('zero', None)
|
||||
@@ -275,10 +276,13 @@ def initialize(model: Union[Callable, nn.Module],
|
||||
cfg_ = zero_cfg.copy()
|
||||
else:
|
||||
cfg_ = {}
|
||||
optimizer_config = zero_cfg.get('optimzer', None)
|
||||
model, optimizer = convert_to_zero_v2(model_builder=model, optimizer_config=optimizer_config)
|
||||
optimizer_config = zero_cfg.get('optimizer_config', None)
|
||||
model_config = zero_cfg.get('model_config', None)
|
||||
model, optimizer = convert_to_zero_v2(model_builder=model,
|
||||
model_config=model_config,
|
||||
optimizer_config=optimizer_config)
|
||||
|
||||
logger.info("Initializing ZeRO model and optimzer finished!", ranks=[0])
|
||||
logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0])
|
||||
#FIXME() throw a warning if using zero with MP
|
||||
if gpc.get_world_size(ParallelMode.MODEL) > 1:
|
||||
logger.warning("ZeRO currently has not been tested with model parallelism.", ranks=[0])
|
||||
@@ -289,6 +293,11 @@ def initialize(model: Union[Callable, nn.Module],
|
||||
elif isinstance(model, Callable):
|
||||
model = model().to(get_current_device())
|
||||
|
||||
# optimizer maybe a optimizer_cls
|
||||
logger.warning("Initializing an non ZeRO model with optimizer class")
|
||||
if isinstance(optimizer, Callable):
|
||||
optimizer = optimizer(model.parameters())
|
||||
|
||||
if not moe_env.is_initialized() and not use_zero:
|
||||
if is_using_sequence():
|
||||
sync_model_param(model, ParallelMode.SEQUENCE_DP)
|
||||
|
@@ -1,4 +1,3 @@
|
||||
import imp
|
||||
import torch
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
@@ -17,7 +17,7 @@ from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
|
||||
def convert_to_zero_v2(model_builder: Callable, optimizer_config) -> (ShardedModelV2, ShardedOptimizerV2):
|
||||
def convert_to_zero_v2(model_builder: Callable, model_config, optimizer_config) -> (ShardedModelV2, ShardedOptimizerV2):
|
||||
"""
|
||||
A helper function to integrate the model and optimizer with ZeRO optimizer and off-loading
|
||||
|
||||
@@ -35,28 +35,26 @@ def convert_to_zero_v2(model_builder: Callable, optimizer_config) -> (ShardedMod
|
||||
# FIXME() pass shard strategy from config
|
||||
shard_strategy = TensorShardStrategy()
|
||||
|
||||
logger.info(f'optimizer_config is {optimizer_config}')
|
||||
if optimizer_config is None:
|
||||
optimizer_config = dict()
|
||||
logger.info(f'model_config is {model_config}')
|
||||
if model_config is None:
|
||||
model_config = dict()
|
||||
|
||||
if isinstance(model_builder, nn.Module):
|
||||
model = model_builder
|
||||
elif isinstance(model_builder, Callable):
|
||||
with ZeroInitContext(convert_fp16='fp16' in gpc.config,
|
||||
target_device=torch.cuda.current_device(),
|
||||
shard_strategy=shard_strategy,
|
||||
shard_param=True):
|
||||
shard_param=model_config.get('shard_param', True)):
|
||||
model = model_builder()
|
||||
else:
|
||||
raise TypeError(f"convert_to_zero_v2 dose not support model_builder of type {type(convert_to_zero_v2)}")
|
||||
|
||||
zero_model = ShardedModelV2(model, shard_strategy=shard_strategy)
|
||||
|
||||
optimizer_class = optimizer_config.get('optimizer_type', None)
|
||||
if optimizer_class is None:
|
||||
raise RuntimeError("Set optimizer_class in zero_config")
|
||||
logger.info(f'optimizer class is {optimizer_class}')
|
||||
|
||||
cfg = optimizer_config.get('optimizer_config', None)
|
||||
logger.info(f'optimizer_config is {cfg}')
|
||||
|
||||
zero_optimizer = ShardedOptimizerV2(zero_model, optimizer_class, **optimizer_config.get('optimizer_config', None))
|
||||
zero_model = ShardedModelV2(model, shard_strategy=shard_strategy, **model_config)
|
||||
zero_optimizer = ShardedOptimizerV2(zero_model, **optimizer_config)
|
||||
return zero_model, zero_optimizer
|
||||
|
||||
|
||||
|
@@ -1,5 +1,4 @@
|
||||
import functools
|
||||
from asyncio.log import logger
|
||||
from collections import OrderedDict
|
||||
from typing import Any, Optional
|
||||
|
||||
|
Reference in New Issue
Block a user