mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 01:28:31 +00:00
[hotfix] fix initialize bug with zero (#442)
This commit is contained in:
@@ -10,7 +10,7 @@ from colossalai.amp.amp_type import AMP_TYPE
|
||||
from colossalai.builder import build_pipeline_model
|
||||
from colossalai.engine.schedule import PipelineSchedule
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.nn import Accuracy, LinearWarmupLR
|
||||
from colossalai.nn import LinearWarmupLR
|
||||
from colossalai.nn.loss import CrossEntropyLoss
|
||||
from colossalai.trainer import Trainer, hooks
|
||||
from colossalai.utils import MultiTimer, free_port, get_dataloader
|
||||
@@ -19,7 +19,7 @@ from model_zoo.vit import vit_tiny_patch4_32
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets import CIFAR10
|
||||
|
||||
BATCH_SIZE = 16
|
||||
BATCH_SIZE = 4
|
||||
NUM_EPOCHS = 60
|
||||
WARMUP_EPOCHS = 5
|
||||
CONFIG = dict(parallel=dict(pipeline=2, tensor=dict(size=2, mode='1d')),
|
||||
|
@@ -2,23 +2,38 @@ from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import checkpoint
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
|
||||
LOGGER = get_dist_logger()
|
||||
LOGGER = get_dist_logger('zero_test')
|
||||
|
||||
_ZERO_OPTIMIZER_CONFIG = dict(optimizer_type=torch.optim.Adam, optimizer_config=dict(lr=1e-3))
|
||||
_ZERO_OFFLOAD_OPTIMIZER_CONFIG = dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False)
|
||||
_ZERO_OFFLOAD_PARAM_CONFIG = dict(device='cpu', pin_memory=True, buffer_count=5, buffer_size=1e8, max_in_cpu=1e9)
|
||||
MP_PARALLEL_CONFIG = dict(fp16=dict(mode=None,), parallel=dict(pipeline=dict(size=1), tensor=dict(size=2, mode=None)))
|
||||
|
||||
_ZERO_MODEL_CONFIG = dict(reduce_scatter_bucket_size_mb=25,
|
||||
fp32_reduce_scatter=False,
|
||||
offload_config=None,
|
||||
gradient_predivide_factor=1.0,
|
||||
shard_param=True,
|
||||
use_memory_tracer=False)
|
||||
|
||||
_ZERO_OPTIMIZER_CONFIG = dict(
|
||||
optimizer_class=torch.optim.Adam,
|
||||
cpu_offload=False,
|
||||
initial_scale=2**32,
|
||||
min_scale=1,
|
||||
growth_factor=2,
|
||||
backoff_factor=0.5,
|
||||
growth_interval=1000,
|
||||
hysteresis=2,
|
||||
max_scale=2**32,
|
||||
)
|
||||
|
||||
ZERO_PARALLEL_CONFIG = dict(fp16=dict(mode=None,),
|
||||
zero=dict(
|
||||
optimzer=_ZERO_OPTIMIZER_CONFIG,
|
||||
offload_optimizer_config=_ZERO_OFFLOAD_OPTIMIZER_CONFIG,
|
||||
offload_param_config=_ZERO_OFFLOAD_PARAM_CONFIG,
|
||||
model_config=_ZERO_MODEL_CONFIG,
|
||||
optimizer_config=_ZERO_OPTIMIZER_CONFIG,
|
||||
),
|
||||
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
|
||||
|
||||
@@ -72,8 +87,8 @@ def check_grads(model, zero_model, loose=False):
|
||||
def check_params(model, zero_model, loose=False):
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
zero_p = zero_p.clone().to(p.device)
|
||||
assert p.dtype == zero_p.dtype
|
||||
assert allclose(p, zero_p, loose=loose)
|
||||
# assert p.dtype == zero_p.dtype
|
||||
assert allclose(p.float(), zero_p.float(), loose=loose), f"diff {p.float() - zero_p.float()}"
|
||||
|
||||
|
||||
def check_grads_padding(model, zero_model, loose=False):
|
||||
|
@@ -19,7 +19,7 @@ def run_dist(rank, world_size, port):
|
||||
# as this model has sync batch normalization
|
||||
# need to configure cudnn deterministic so that
|
||||
# randomness of convolution layers will be disabled
|
||||
zero_config = dict(optimzer=dict(optimizer_type=torch.optim.Adam, optimizer_config=dict(lr=1e-3)))
|
||||
zero_config = dict(optimizer_config=dict(optimizer_class=torch.optim.Adam, lr=1e-3))
|
||||
colossalai.launch(config=dict(zero=zero_config, cudnn_determinstic=True, cudnn_benchmark=False),
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
|
@@ -3,19 +3,22 @@
|
||||
|
||||
import copy
|
||||
from functools import partial
|
||||
from colossalai.zero.sharded_model.sharded_model_v2 import ShardedModelV2
|
||||
import pytest
|
||||
|
||||
import colossalai
|
||||
from colossalai.utils import free_port
|
||||
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed as dist
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from common import check_sharded_params_padding, ZERO_PARALLEL_CONFIG
|
||||
from common import check_sharded_params_padding, ZERO_PARALLEL_CONFIG, MP_PARALLEL_CONFIG, check_params
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=ZERO_PARALLEL_CONFIG,
|
||||
def run_dist(rank, world_size, port, parallel_config):
|
||||
colossalai.launch(config=parallel_config,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host='localhost',
|
||||
@@ -27,22 +30,21 @@ def run_dist(rank, world_size, port):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
||||
|
||||
# adapt to a Callbale with empty parameters
|
||||
# def module_builder_new():
|
||||
# return model_builder(checkpoint=True)
|
||||
|
||||
zero_model = model_builder(checkpoint=True)
|
||||
torch_model = copy.deepcopy(zero_model).cuda()
|
||||
engine, train_dataloader, _, _ = colossalai.initialize(zero_model,
|
||||
colo_model = model_builder(checkpoint=True)
|
||||
torch_model = copy.deepcopy(colo_model).cuda()
|
||||
engine, train_dataloader, _, _ = colossalai.initialize(colo_model,
|
||||
optimizer=optimizer_class,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader)
|
||||
engine.train()
|
||||
torch_optimizer = optimizer_class(torch_model.parameters())
|
||||
|
||||
if dist.get_world_size() > 1:
|
||||
torch_model = DDP(torch_model)
|
||||
|
||||
i = 0
|
||||
for data, label in train_dataloader:
|
||||
if i > 3:
|
||||
if i > 4:
|
||||
break
|
||||
|
||||
data, label = data.cuda(), label.cuda()
|
||||
@@ -67,15 +69,28 @@ def run_dist(rank, world_size, port):
|
||||
torch_optimizer.step()
|
||||
i += 1
|
||||
|
||||
check_sharded_params_padding(torch_model, zero_model, loose=True)
|
||||
# for torch_param, zero_param in zip(torch_model.parameters(), colo_model.parameters()):
|
||||
# assert torch.allclose(torch_param, zero_param), f"diff {torch_param - zero_param}"
|
||||
|
||||
if parallel_config == MP_PARALLEL_CONFIG:
|
||||
check_params(torch_model, colo_model, loose=True)
|
||||
elif isinstance(colo_model, ShardedModelV2):
|
||||
check_sharded_params_padding(torch_model, colo_model, loose=True)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [2, 4])
|
||||
def test_mp_engine(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=MP_PARALLEL_CONFIG)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [1, 2])
|
||||
def test_zero_init(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
def test_zero_engine(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=ZERO_PARALLEL_CONFIG)
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_zero_init(world_size=2)
|
||||
test_zero_engine(world_size=4)
|
Reference in New Issue
Block a user