mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-25 01:40:08 +00:00
[hotfix] fix initialize bug with zero (#442)
This commit is contained in:
@@ -2,23 +2,38 @@ from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import checkpoint
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
|
||||
LOGGER = get_dist_logger()
|
||||
LOGGER = get_dist_logger('zero_test')
|
||||
|
||||
_ZERO_OPTIMIZER_CONFIG = dict(optimizer_type=torch.optim.Adam, optimizer_config=dict(lr=1e-3))
|
||||
_ZERO_OFFLOAD_OPTIMIZER_CONFIG = dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False)
|
||||
_ZERO_OFFLOAD_PARAM_CONFIG = dict(device='cpu', pin_memory=True, buffer_count=5, buffer_size=1e8, max_in_cpu=1e9)
|
||||
MP_PARALLEL_CONFIG = dict(fp16=dict(mode=None,), parallel=dict(pipeline=dict(size=1), tensor=dict(size=2, mode=None)))
|
||||
|
||||
_ZERO_MODEL_CONFIG = dict(reduce_scatter_bucket_size_mb=25,
|
||||
fp32_reduce_scatter=False,
|
||||
offload_config=None,
|
||||
gradient_predivide_factor=1.0,
|
||||
shard_param=True,
|
||||
use_memory_tracer=False)
|
||||
|
||||
_ZERO_OPTIMIZER_CONFIG = dict(
|
||||
optimizer_class=torch.optim.Adam,
|
||||
cpu_offload=False,
|
||||
initial_scale=2**32,
|
||||
min_scale=1,
|
||||
growth_factor=2,
|
||||
backoff_factor=0.5,
|
||||
growth_interval=1000,
|
||||
hysteresis=2,
|
||||
max_scale=2**32,
|
||||
)
|
||||
|
||||
ZERO_PARALLEL_CONFIG = dict(fp16=dict(mode=None,),
|
||||
zero=dict(
|
||||
optimzer=_ZERO_OPTIMIZER_CONFIG,
|
||||
offload_optimizer_config=_ZERO_OFFLOAD_OPTIMIZER_CONFIG,
|
||||
offload_param_config=_ZERO_OFFLOAD_PARAM_CONFIG,
|
||||
model_config=_ZERO_MODEL_CONFIG,
|
||||
optimizer_config=_ZERO_OPTIMIZER_CONFIG,
|
||||
),
|
||||
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
|
||||
|
||||
@@ -72,8 +87,8 @@ def check_grads(model, zero_model, loose=False):
|
||||
def check_params(model, zero_model, loose=False):
|
||||
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||
zero_p = zero_p.clone().to(p.device)
|
||||
assert p.dtype == zero_p.dtype
|
||||
assert allclose(p, zero_p, loose=loose)
|
||||
# assert p.dtype == zero_p.dtype
|
||||
assert allclose(p.float(), zero_p.float(), loose=loose), f"diff {p.float() - zero_p.float()}"
|
||||
|
||||
|
||||
def check_grads_padding(model, zero_model, loose=False):
|
||||
|
||||
Reference in New Issue
Block a user