mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-23 02:20:49 +00:00
[refactory] add nn.parallel module (#1068)
This commit is contained in:
15
colossalai/nn/parallel/layers/__init__.py
Normal file
15
colossalai/nn/parallel/layers/__init__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from .colo_module import ColoModule
|
||||
from .linear import ColoLinear
|
||||
from .embedding import ColoEmbedding
|
||||
from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module
|
||||
|
||||
__all__ = [
|
||||
'ColoModule',
|
||||
'register_colo_module',
|
||||
'is_colo_module',
|
||||
'get_colo_module',
|
||||
'init_colo_module',
|
||||
'check_colo_module',
|
||||
'ColoLinear',
|
||||
'ColoEmbedding',
|
||||
]
|
56
colossalai/nn/parallel/layers/colo_module.py
Normal file
56
colossalai/nn/parallel/layers/colo_module.py
Normal file
@@ -0,0 +1,56 @@
|
||||
from colossalai.tensor.distspec import _DistSpec
|
||||
from colossalai.tensor import ComputePattern
|
||||
from typing import List, Dict
|
||||
|
||||
|
||||
class ColoModule(object):
|
||||
|
||||
def __init__(self):
|
||||
self._shard_params: List[str] = []
|
||||
# Example:
|
||||
# {ComputePattern.TP1D:
|
||||
# 'default':
|
||||
# 'weight':
|
||||
# distspec.shard(xxxxx)
|
||||
# 'bias':
|
||||
# distspec.shard(xxxxx)
|
||||
# 'row': ...
|
||||
# 'col': ...
|
||||
# }
|
||||
self._allowed_patterns: Dict[ComputePattern, Dict[str, Dict[str, _DistSpec]]] = {}
|
||||
|
||||
def _register_shard_params(self, params: List[str]):
|
||||
self._shard_params = params
|
||||
|
||||
def _register_allowed_patterns(self,
|
||||
compute_pattern: ComputePattern,
|
||||
dist_specs: Dict[str, _DistSpec],
|
||||
mode='default'):
|
||||
assert list(
|
||||
dist_specs.keys()).sort() == self._shard_params.sort(), 'Every registered param should have dist_spec.'
|
||||
if not compute_pattern in self._allowed_patterns:
|
||||
self._allowed_patterns[compute_pattern] = {}
|
||||
self._allowed_patterns[compute_pattern][mode] = dist_specs
|
||||
|
||||
def _set_default(self, compute_pattern: ComputePattern, target_mode):
|
||||
self._allowed_patterns[compute_pattern]['default'] = self._allowed_patterns[compute_pattern][target_mode]
|
||||
|
||||
def has_compute_pattern(self, compute_pattern: ComputePattern):
|
||||
return compute_pattern in self._allowed_patterns
|
||||
|
||||
def get_dist_specs(self, compute_pattern: ComputePattern):
|
||||
assert self.has_compute_pattern(compute_pattern)
|
||||
return self._allowed_patterns[compute_pattern]
|
||||
|
||||
def has_compute_pattern_with_mode(self, compute_pattern: ComputePattern, mode='default'):
|
||||
return compute_pattern in self._allowed_patterns and mode in self._allowed_patterns[compute_pattern]
|
||||
|
||||
def get_dist_specs_with_mode(self, compute_pattern: ComputePattern, mode='default'):
|
||||
assert self.has_compute_pattern_with_mode(compute_pattern, mode)
|
||||
return self._allowed_patterns[compute_pattern][mode]
|
||||
|
||||
def get_param_names(self):
|
||||
return self._shard_params
|
||||
|
||||
def register(self, compute_pattern):
|
||||
raise NotImplementedError
|
42
colossalai/nn/parallel/layers/embedding.py
Normal file
42
colossalai/nn/parallel/layers/embedding.py
Normal file
@@ -0,0 +1,42 @@
|
||||
from .colo_module import ColoModule
|
||||
from colossalai.tensor import ComputePattern, distspec
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
|
||||
|
||||
class ColoEmbedding(ColoModule):
|
||||
|
||||
def __init__(self):
|
||||
super(ColoEmbedding, self).__init__()
|
||||
self._register_shard_params(['weight'])
|
||||
|
||||
def register(self, compute_pattern):
|
||||
if not compute_pattern in self._allowed_patterns:
|
||||
if ComputePattern.TP1D == compute_pattern:
|
||||
self._set_TP1D()
|
||||
|
||||
def _set_TP1D(self):
|
||||
# TP1D Row Linear
|
||||
_compute_pattern = ComputePattern.TP1D
|
||||
self._register_allowed_patterns(
|
||||
compute_pattern=_compute_pattern,
|
||||
dist_specs={
|
||||
'weight':
|
||||
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0],
|
||||
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
|
||||
},
|
||||
mode='row',
|
||||
)
|
||||
|
||||
# TP1D Col Linear
|
||||
self._register_allowed_patterns(
|
||||
compute_pattern=_compute_pattern,
|
||||
dist_specs={
|
||||
'weight':
|
||||
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1],
|
||||
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
|
||||
},
|
||||
mode='col',
|
||||
)
|
||||
|
||||
self._set_default(compute_pattern=_compute_pattern, target_mode='row')
|
47
colossalai/nn/parallel/layers/linear.py
Normal file
47
colossalai/nn/parallel/layers/linear.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from .colo_module import ColoModule
|
||||
from colossalai.tensor import ComputePattern, distspec
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
|
||||
|
||||
class ColoLinear(ColoModule):
|
||||
|
||||
def __init__(self):
|
||||
super(ColoLinear, self).__init__()
|
||||
self._register_shard_params(['weight', 'bias'])
|
||||
|
||||
def register(self, compute_pattern):
|
||||
if not compute_pattern in self._allowed_patterns:
|
||||
if ComputePattern.TP1D == compute_pattern:
|
||||
self._set_TP1D()
|
||||
|
||||
def _set_TP1D(self):
|
||||
# TP1D Row Linear
|
||||
_compute_pattern = ComputePattern.TP1D
|
||||
self._register_allowed_patterns(
|
||||
compute_pattern=_compute_pattern,
|
||||
dist_specs={
|
||||
'weight':
|
||||
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1],
|
||||
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
|
||||
'bias':
|
||||
None
|
||||
},
|
||||
mode='row',
|
||||
)
|
||||
|
||||
# TP1D Col Linear
|
||||
self._register_allowed_patterns(
|
||||
compute_pattern=_compute_pattern,
|
||||
dist_specs={
|
||||
'weight':
|
||||
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0],
|
||||
[gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
|
||||
'bias':
|
||||
distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0],
|
||||
[gpc.get_world_size(ParallelMode.PARALLEL_1D)])
|
||||
},
|
||||
mode='col',
|
||||
)
|
||||
|
||||
self._set_default(compute_pattern=_compute_pattern, target_mode='row')
|
107
colossalai/nn/parallel/layers/module_utils.py
Normal file
107
colossalai/nn/parallel/layers/module_utils.py
Normal file
@@ -0,0 +1,107 @@
|
||||
from typing import Dict
|
||||
from colossalai.tensor import ColoParameter, ParallelAction, TensorSpec
|
||||
from . import ColoModule
|
||||
import torch
|
||||
|
||||
_COLOSSAL_MODULES: Dict[type, ColoModule] = {}
|
||||
|
||||
|
||||
def register_colo_module(module_type: type, colo_module: ColoModule):
|
||||
global _COLOSSAL_MODULES
|
||||
_COLOSSAL_MODULES[module_type] = colo_module
|
||||
|
||||
|
||||
def is_colo_module(module: torch.nn.Module):
|
||||
global _COLOSSAL_MODULES
|
||||
for module_type in _COLOSSAL_MODULES.keys():
|
||||
if isinstance(module, module_type):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def get_colo_module(module: torch.nn.Module):
|
||||
global _COLOSSAL_MODULES
|
||||
if is_colo_module(module):
|
||||
for module_type, colo_module in _COLOSSAL_MODULES.items():
|
||||
if isinstance(module, module_type):
|
||||
return colo_module
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def check_colo_module(module: torch.nn.Module, recursive=True):
|
||||
if is_colo_module(module):
|
||||
colo_module = get_colo_module(module)
|
||||
param_names = colo_module.get_param_names()
|
||||
compute_pattern = None
|
||||
for param_name in param_names:
|
||||
param = module.get_parameter(param_name)
|
||||
if not isinstance(param, ColoParameter):
|
||||
raise Exception(f'Invalid ColoParameter spec: {param} in {module} is not a ColoParameter.')
|
||||
if param.has_spec():
|
||||
cur_compute_pattern = param.spec.parallel_action.compute_pattern
|
||||
if compute_pattern is None:
|
||||
compute_pattern = cur_compute_pattern
|
||||
else:
|
||||
if cur_compute_pattern != compute_pattern:
|
||||
raise Exception(
|
||||
f'Invalid ColoParameter spec: Params in {module} have different compute_pattern.')
|
||||
else:
|
||||
continue
|
||||
|
||||
if compute_pattern is not None:
|
||||
colo_module.register(compute_pattern)
|
||||
if not colo_module.has_compute_pattern(compute_pattern):
|
||||
raise Exception(
|
||||
f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.')
|
||||
|
||||
match_specs = False
|
||||
allowed_specs = colo_module.get_dist_specs(compute_pattern)
|
||||
for _, param_specs in allowed_specs.items():
|
||||
cur_match = True
|
||||
for param_name, dist_spec in param_specs.items():
|
||||
param = module.get_parameter(param_name)
|
||||
if param.has_spec():
|
||||
if dist_spec != param.spec.dist_spec:
|
||||
cur_match = False
|
||||
break
|
||||
else:
|
||||
if dist_spec is not None:
|
||||
cur_match = False
|
||||
break
|
||||
if cur_match == True:
|
||||
match_specs = True
|
||||
break
|
||||
if match_specs == False:
|
||||
raise Exception(f'Invalid ColoParameter spec: Params in {module} are incorrectly sharded.')
|
||||
if recursive == True:
|
||||
for submodule in module.children():
|
||||
check_colo_module(submodule, recursive=True)
|
||||
|
||||
|
||||
def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, recursive=True, mode='default'):
|
||||
compute_pattern = parallel_action.compute_pattern
|
||||
if is_colo_module(module):
|
||||
# for each param
|
||||
# set DistSpec and ParallelAction
|
||||
colo_module = get_colo_module(module)
|
||||
colo_module.register(compute_pattern)
|
||||
if not colo_module.has_compute_pattern_with_mode(compute_pattern, mode=mode):
|
||||
raise NotImplementedError
|
||||
# a set for modules which update at least one param in the init process.
|
||||
# these modules need to be checked whether all params still match one of the valid compute pattern.
|
||||
modules_update_param = {module}
|
||||
for param_name, dist_spec in colo_module.get_dist_specs_with_mode(compute_pattern, mode=mode).items():
|
||||
if dist_spec is None:
|
||||
continue
|
||||
param = module.get_parameter(param_name)
|
||||
if isinstance(param, ColoParameter):
|
||||
spec = TensorSpec(dist_spec, parallel_action)
|
||||
param.set_spec(spec)
|
||||
for mod in param.shared_param_modules:
|
||||
modules_update_param.add(mod)
|
||||
for mod in modules_update_param:
|
||||
check_colo_module(mod, recursive=False)
|
||||
if recursive == True:
|
||||
for submodule in module.children():
|
||||
init_colo_module(submodule, parallel_action, recursive=True, mode=mode)
|
Reference in New Issue
Block a user