[Colossal-LLaMA] Refactor latest APIs (#6030)

* refactor latest code

* update api

* add dummy dataset

* update Readme

* add setup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update files

* add PP support

* update arguments

* update argument

* reorg folder

* update version

* remove IB infor

* update utils

* update readme

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update save for zero

* update save

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add apex

* update

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Tong Li 2024-08-28 17:01:58 +08:00 committed by GitHub
parent cc1b0efc17
commit 4a68efb7da
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 397 additions and 549 deletions

View File

@ -30,7 +30,7 @@ Colossal-LLaMA
- [Install](#install)
- [0. Pre-requisite](#0-pre-requisite)
- [1. Install required packages](#1-install-required-packages)
- [2. Install `xentropy`, `layer_norm` and `rotary`](#2-install-xentropy-layer_norm-and-rotary)
- [2. Install Apex](#2-install-apex)
- [How to run](#how-to-run)
- [1. Init Tokenizer Preparation](#1-init-tokenizer-preparation)
- [2. Init Model Preparation](#2-init-model-preparation)
@ -297,17 +297,13 @@ Here is details about CLI arguments:
#### 1. Install required packages
```
cd Colossal-LLaMA
pip install -r requirements.txt
pip install -e .
```
#### 2. Install `xentropy`, `layer_norm` and `rotary`
#### 2. Install Apex
```bash
git clone git@github.com:Dao-AILab/flash-attention.git
# At the root folder
cd csrc/xentropy && pip install .
# At the root folder
cd csrc/layer_norm && pip install .
# At the root folder
cd csrc/rotary && pip install .
git clone git@github.com:NVIDIA/apex.git
# Install from source.
```
### How to run
@ -427,25 +423,33 @@ Make sure master node can access all nodes (including itself) by ssh without pas
Here is details about CLI arguments:
* Pre-trained model path: `--pretrained`. Path to the pre-trained model in Hugging Face format.
* Dataset path: `--dataset`. Path to the pre-tokenized dataset.
* Booster plugin: `--plugin`. `gemini`, `gemini_auto`, `zero2``zero2_cpu` and `3d` are supported.For more details, please refer to [Booster plugins](https://colossalai.org/docs/basics/booster_plugins/).
* Booster plugin: `--plugin`. `ddp`,`gemini`, `gemini_auto`, `zero2``zero2_cpu` and `3d` are supported.For more details, please refer to [Booster plugins](https://colossalai.org/docs/basics/booster_plugins/).
* Intermediate checkpoint to load: `--load_checkpoint`. Path to the intermediate checkpoint. Saved checkpoint contains the states for `lr_scheduler`, `optimizer`,`running_states.json` and `modelling`. If `load_checkpoint` points to the `modelling` folder, only the model weights will be loaded without any other states to support multi-stage training.
* Save interval: `--save_interval`. The interval (steps) of saving checkpoints. The default value is 1000.
* Checkpoint directory: `--save_dir`. The directory path to save checkpoint and intermediate states. Intermediate states include `lr_scheduler`, `optimizer`,`running_states.json` and `modelling`.
* Tensorboard directory: `--tensorboard_dir`. The path to save tensorboard logs.
* Configuration file: `--config_file`. The path to save the configuration file.
* Number of epochs: `--num_epochs`. Number of training epochs. The default value is 1.
* Micro batch size: `--micro_batch_size`. Batch size per GPU. The default value is 1.
* Batch size: `--batch_size`. Batch size per GPU. The default value is 1. For PP, it refers to number of samples per step.
* Learning rate: `--lr`. The default value is 3e-4.
* Max length: `--max_length`. Max context length. The default value is 4096.
* Mixed precision: `--mixed_precision`. The default value is "fp16". "fp16" and "bf16" are supported.
* Gradient clipping: `--gradient_clipping`. The default value is 1.0.
* Weight decay: `-w`, `--weight_decay`. The default value is 0.1.
* Warmup steps: `-s`, `--warmup_steps`. The default value is calculated by 0.025 warmup ratio.
* Weight decay: `--weight_decay`. The default value is 0.1.
* Warmup steps: `--warmup_steps`. The default value is calculated by 0.025 warmup ratio.
* Gradient checkpointing: `--use_grad_checkpoint`. The default value is `False`. This saves memory at the cost of speed. You'd better enable this option when training with a large batch size.
* Flash attention: `--use_flash_attn`. If you want to use flash attention, you must install `flash-attn` and related packages. The default value is `False`. This is helpful to accelerate training while saving memory. We recommend you always use flash attention.
* Freeze non-embedding parameters: `--freeze_non_embeds_params`. Freeze non-embedding parameters. It can be helpful to align embeddings after extending vocabulary size.
* Tensor parallelism size: `--tp`. TP size for 3d Parallelism. The default value is 1.
* Zero stage: `--zero`. Zero stage for 3d Parallelism. The default value is 1.
* Tensor parallelism size: `--tp`. TP size for 3d parallelism. The default value is 1. Used for 3d plugin.
* Pipeline parallelism size: `--pp`. PP size for 3d parallelism. The default value is 1. Used for 3d plugin.
* Sequence parallelism size: `--sp`. SP size for 3d parallelism. The default value is 1. Used for 3d plugin.
* Zero stage: `--zero`. Zero stage for 3d Parallelism. The default value is 1. Used for 3d plugin.
* Sequence parallelism mode: `--sp_mode`. SP mode, used for 3d plugin. Choose from "split_gather", "ring", "all_to_all".
* Switch for sequence parallelism: `--enable_sequence_parallelism`. Whether to enable SP, used for 3d plugin.
* Zero CPU offload: `--zero_cpu_offload`. Whether to use offloading, used for 3d plugin.
* Micro batch size: `--microbatch_size`. Batch size for each process in PP, used for 3d plugin.
* Number of dummy sample: `--num_samples`. Number of samples for benchmarking.
* Benchmark switch: `--benchmark`. Benchmark performance using random dataset.
##### 4.2 Arguments for Supervised Fine-tuning
We add support for gradient accumulation and NEFTuning for supervised fine-tuning and thus there are two more arguments apart from the arguments listed in [4.1 Arguments for Pretraining](#41-arguments-for-pretraining).

View File

@ -0,0 +1,24 @@
import torch
from torch.utils.data import Dataset
from colossalai.accelerator import get_accelerator
class RandomDataset(Dataset):
def __init__(self, num_samples: int = 1000, max_length: int = 2048, vocab_size: int = 32000):
self.num_samples = num_samples
self.max_length = max_length
self.input_ids = torch.randint(
0, vocab_size, (num_samples, max_length), device=get_accelerator().get_current_device()
)
self.attention_mask = torch.ones_like(self.input_ids)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
return {
"input_ids": self.input_ids[idx],
"attention_mask": self.attention_mask[idx],
"labels": self.input_ids[idx],
}

View File

@ -1,352 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
from types import MethodType
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaForCausalLM,
LlamaModel,
LlamaRMSNorm,
apply_rotary_pos_emb,
repeat_kv,
)
from colossalai.accelerator import get_accelerator
from colossalai.logging import get_dist_logger
logger = get_dist_logger()
if get_accelerator().name == "cuda":
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_varlen_kvpacked_func
from flash_attn.ops.rms_norm import rms_norm
def _prepare_decoder_attention_mask(
self: LlamaModel,
attention_mask: torch.BoolTensor,
input_shape: torch.Size,
inputs_embeds: torch.Tensor,
past_key_values_length: int,
) -> Optional[torch.Tensor]:
"""
Decoder attetion mask
"""
if past_key_values_length > 0 and attention_mask is not None:
attention_mask = torch.cat(
tensors=(
torch.full(
size=(input_shape[0], past_key_values_length),
fill_value=True,
dtype=attention_mask.dtype,
device=attention_mask.device,
),
attention_mask,
),
dim=-1,
) # (bsz, past_key_values_length + q_len)
if attention_mask is not None and torch.all(attention_mask):
return None # Faster
return attention_mask
def attention_forward(
self: LlamaAttention,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Re-define LLaMA-2 `LlamaAttention` forward method using flash-attention.
"""
if output_attentions:
logger.warning(
"Argument `output_attentions` is not supported for flash-attention patched `LlamaAttention`, "
"return `None` instead."
)
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
q_slicing, kv_slicing = (
dim // self.config.pretraining_tp
for dim in (
self.num_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
)
) # `Tuple[int, int]`
q_slices, k_slices, v_slices = (
proj.weight.split(slicing, dim=0)
for proj, slicing in (
(self.q_proj, q_slicing),
(self.k_proj, kv_slicing),
(self.v_proj, kv_slicing),
)
) # Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor], Tuple[torch.Tensor]]
q, k, v = (
torch.cat(
[F.linear(hidden_states, slices[i]) for i in range(self.config.pretraining_tp)],
dim=-1,
)
for slices in (q_slices, k_slices, v_slices)
)
# `Tuple[torch.Tensor, torch.Tensor, torch.Tensor]` of shape:
# (bsz, q_len, num_heads * head_dim),
# (bsz, q_len, num_key_value_heads * head_dim),
# (bsz, q_len, num_key_value_heads * head_dim)
else:
q, k, v = (proj(hidden_states) for proj in (self.q_proj, self.k_proj, self.v_proj))
# `Tuple[torch.Tensor, torch.Tensor, torch.Tensor]` of shape:
# (bsz, q_len, num_heads * head_dim),
# (bsz, q_len, num_key_value_heads * head_dim),
# (bsz, q_len, num_key_value_heads * head_dim)
# (bsz, q_len, num_heads * head_dim) -> (bsz, num_heads, q_len, head_dim);
# (bsz, q_len, num_key_value_heads * head_dim) -> (bsz, num_key_value_heads, q_len, head_dim);
# (bsz, q_len, num_key_value_heads * head_dim) -> (bsz, num_key_value_heads, q_len, head_dim)
q, k, v = (
states.view(bsz, q_len, num_heads, self.head_dim).transpose(1, 2)
for states, num_heads in (
(q, self.num_heads),
(k, self.num_key_value_heads),
(v, self.num_key_value_heads),
)
)
kv_len = k.shape[-2] # initially, `kv_len` == `q_len`
past_kv_len = 0
if past_key_value is not None:
# if `past_key_value` is not None, `kv_len` > `q_len`.
past_kv_len = past_key_value[0].shape[-2]
kv_len += past_kv_len
# two `torch.Tensor` objs of shape (1, 1, kv_len, head_dim)
cos, sin = self.rotary_emb(v, seq_len=kv_len)
# (bsz, num_heads, q_len, head_dim), (bsz, num_key_value_heads, q_len, head_dim)
q, k = apply_rotary_pos_emb(q=q, k=k, cos=cos, sin=sin, position_ids=position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
k = torch.cat([past_key_value[0], k], dim=2)
v = torch.cat([past_key_value[1], v], dim=2)
past_key_value = (k, v) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
k = repeat_kv(hidden_states=k, n_rep=self.num_key_value_groups)
# (bsz, num_key_value_heads, q_len, head_dim) -> (bsz, num_heads, q_len, head_dim)
v = repeat_kv(hidden_states=v, n_rep=self.num_key_value_groups)
# (bsz, num_key_value_heads, q_len, head_dim) -> (bsz, num_heads, q_len, head_dim)
key_padding_mask = attention_mask
# (bsz, num_heads, q_len, head_dim) -> (bsz, q_len, num_heads, head_dim)
q, k, v = (states.transpose(1, 2) for states in (q, k, v))
if past_kv_len > 0:
q = torch.cat(
tensors=(
torch.full(
size=(bsz, past_kv_len, self.num_heads, self.head_dim),
fill_value=0.0,
dtype=q.dtype,
device=q.device,
),
q,
),
dim=1,
) # (bsz, past_kv_len + q_len, num_heads, head_dim)
if key_padding_mask is None:
# (bsz, past_kv_len + q_len, num_heads, head_dim)
output = flash_attn_func(q=q, k=k, v=v, dropout_p=0.0, softmax_scale=None, causal=True) # (bsz, )
output = rearrange(
output, pattern="... h d -> ... (h d)"
) # (bsz, past_kv_len + q_len, num_heads * head_dim)
else:
q, indices, cu_q_lens, max_q_len = unpad_input(hidden_states=q, attention_mask=key_padding_mask)
kv, _, cu_kv_lens, max_kv_len = unpad_input(
hidden_states=torch.stack(tensors=(k, v), dim=2),
attention_mask=key_padding_mask,
)
output_unpad = flash_attn_varlen_kvpacked_func(
q=q,
kv=kv,
cu_seqlens_q=cu_q_lens,
cu_seqlens_k=cu_kv_lens,
max_seqlen_q=max_q_len,
max_seqlen_k=max_kv_len,
dropout_p=0.0,
softmax_scale=None,
causal=True,
)
output = pad_input(
hidden_states=rearrange(output_unpad, pattern="nnz h d -> nnz (h d)"),
indices=indices,
batch=bsz,
seqlen=past_kv_len + q_len,
) # (bsz, past_kv_len + q_len, num_heads * head_dim)
if past_kv_len > 0:
# Strip off the zero query outputs.
output = output[:, past_kv_len:, ...] # (bsz, q_len, num_heads * head_dim)
output = self.o_proj(output) # (bsz, q_len, hidden_size)
return output, None, past_key_value
def rms_norm_forward(self: LlamaRMSNorm, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Formard function for RMS Norm
"""
return rms_norm(x=hidden_states, weight=self.weight, epsilon=self.variance_epsilon)
def replace_with_flash_attention(model: LlamaForCausalLM) -> None:
for name, module in model.named_modules():
if isinstance(module, LlamaAttention):
module.forward = MethodType(attention_forward, module)
if isinstance(module, LlamaModel):
module._prepare_decoder_attention_mask = MethodType(_prepare_decoder_attention_mask, module)
if isinstance(module, LlamaRMSNorm):
module.forward = MethodType(rms_norm_forward, module)
elif get_accelerator().name == "npu":
import torch_npu
class NPULlamaAttention(LlamaAttention):
use_flash: bool = True
def __init__(self, config: LlamaConfig):
super().__init__(config)
self.setup()
def setup(self):
self._softmax_scale = 1 / math.sqrt(self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if not self.use_flash:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
else:
attn_output, *_ = torch_npu.npu_fusion_attention(
query_states,
key_states,
value_states,
self.num_heads,
"BNSD",
atten_mask=attention_mask.bool(),
scale=self._softmax_scale,
padding_mask=None,
pre_tockens=65535,
next_tockens=0,
keep_prob=1.0,
inner_precise=0,
)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum(
[F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]
)
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class NPURMSNorm(LlamaRMSNorm):
def forward(self, hidden_states):
return torch_npu.npu_rms_norm(hidden_states, self.weight, epsilon=self.variance_epsilon)[0]
def replace_with_flash_attention(model: LlamaForCausalLM) -> None:
for name, module in model.named_modules():
if isinstance(module, LlamaAttention):
module.__class__ = NPULlamaAttention
module.setup()
if isinstance(module, LlamaRMSNorm):
module.__class__ = NPURMSNorm

View File

@ -0,0 +1,36 @@
"""
Utils for Colossal-LLaMA
"""
import torch
import torch.distributed as dist
from colossalai.booster import Plugin
def all_reduce_mean(tensor: torch.Tensor, plugin: Plugin = None) -> torch.Tensor:
if plugin is not None:
dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM, group=plugin.dp_group)
tensor.div_(plugin.dp_size)
else:
dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM)
tensor.div_(dist.get_world_size())
return tensor
def get_model_numel(model: torch.nn.Module) -> int:
return sum(p.numel() for p in model.parameters())
def format_numel_str(numel: int) -> str:
B = 1024**3
M = 1024**2
K = 1024
if numel >= B:
return f"{numel / B:.2f} B"
elif numel >= M:
return f"{numel / M:.2f} M"
elif numel >= K:
return f"{numel / K:.2f} K"
else:
return f"{numel}"

View File

@ -1,15 +1,15 @@
torch==2.1.2
huggingface-hub
packaging==24.0
colossalai==0.3.6
colossalai>=0.4.0
autoflake==2.2.1
black==23.9.1
transformers==4.34.1
transformers>=4.39.3
tensorboard==2.14.0
six==1.16.0
datasets
ninja==1.11.1
flash-attn>=2.0.0,<=2.0.5
flash-attn
tqdm
sentencepiece==0.1.99
protobuf<=3.20.0

View File

@ -0,0 +1,37 @@
from setuptools import find_packages, setup
def fetch_requirements(path):
with open(path, "r") as fd:
return [r.strip() for r in fd.readlines()]
def fetch_readme():
with open("README.md", encoding="utf-8") as f:
return f.read()
def fetch_version():
with open("version.txt", "r") as f:
return f.read().strip()
setup(
name="colossal_llama",
version=fetch_version(),
packages=find_packages(exclude=("*.egg-info",)),
description="Continual Pre-training and SFT for LLaMA",
long_description=fetch_readme(),
long_description_content_type="text/markdown",
license="Apache Software License 2.0",
url="https://github.com/hpcaitech/ColossalAI/tree/main/applications/Colossal-LLaMA",
install_requires=fetch_requirements("requirements.txt"),
python_requires=">=3.7",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: Apache Software License",
"Environment :: GPU :: NVIDIA CUDA",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: System :: Distributed Computing",
],
)

View File

@ -1,13 +1,20 @@
#!/bin/bash
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv |
tail -n +2 |
nl -v 0 |
tee /dev/tty |
sort -g -k 2 |
awk '{print $1}' |
head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
# NCCL IB environment variables
export NCCL_IB_HCA=mlx5_1:1,mlx5_2:1,mlx5_3:1,mlx5_4:1
export NCCL_IB_DISABLE=0
export NCCL_SOCKET_IFNAME=eth0
export NCCL_IB_GID_INDEX=3
export NCCL_IB_TIMEOUT=23
export NCCL_IB_RETRY_CNT=7
export OMP_NUM_THREADS=8
set_n_least_used_CUDA_VISIBLE_DEVICES 8
PROJECT_NAME=""
PARENT_SAVE_DIR=""

View File

@ -11,24 +11,24 @@ import resource
from contextlib import nullcontext
import torch
import torch.distributed as dist
from colossal_llama.dataset.dummy_dataset import RandomDataset
from colossal_llama.dataset.loader import (
DataCollatorForSupervisedDataset,
StatefulDistributedSampler,
load_tokenized_dataset,
)
from colossal_llama.utils.ckpt_io import load_checkpoint, save_checkpoint
from colossal_llama.utils.flash_attention_patch import replace_with_flash_attention
from colossal_llama.utils.froze import freeze_non_embeds_parameters
from colossal_llama.utils.neftune_patch import activate_neftune, deactivate_neftune
from colossal_llama.utils.utils import all_reduce_mean, format_numel_str, get_model_numel
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from transformers import AutoTokenizer, LlamaForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
@ -36,109 +36,7 @@ from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
def get_model_numel(model: torch.nn.Module) -> int:
return sum(p.numel() for p in model.parameters())
def format_numel_str(numel: int) -> str:
B = 1024**3
M = 1024**2
K = 1024
if numel >= B:
return f"{numel / B:.2f} B"
elif numel >= M:
return f"{numel / M:.2f} M"
elif numel >= K:
return f"{numel / K:.2f} K"
else:
return f"{numel}"
def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor:
dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM)
tensor = tensor.data
tensor.div_(dist.get_world_size())
return tensor
def main() -> None:
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained",
type=str,
default=None,
help="Address of the pre-trained modeling",
)
parser.add_argument("--dataset", nargs="+", default=[])
parser.add_argument(
"--plugin",
type=str,
default="gemini",
choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d"],
help="Choose which plugin to use",
)
parser.add_argument("--load_checkpoint", type=str, default=None, help="Load checkpoint")
parser.add_argument("--save_interval", type=int, default=1000, help="Save interval")
parser.add_argument("--save_dir", type=str, default="checkpoint_dir", help="Checkpoint directory")
parser.add_argument("--tensorboard_dir", type=str, default="logs_dir", help="Tensorboard directory")
parser.add_argument("--config_file", type=str, default="config_file", help="Config file")
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
parser.add_argument("--accumulation_steps", type=int, default=1, help="Number of accumulation steps")
parser.add_argument("--micro_batch_size", type=int, default=2, help="Batch size of each process")
parser.add_argument("--lr", type=float, default=3e-4, help="Learning rate")
parser.add_argument("--max_length", type=int, default=8192, help="Model max length")
parser.add_argument(
"--mixed_precision",
type=str,
default="fp16",
choices=["fp16", "bf16"],
help="Mixed precision",
)
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value")
parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay")
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
parser.add_argument(
"--use_grad_checkpoint",
action="store_true",
default=False,
help="Use gradient checkpointing",
)
parser.add_argument(
"--use_flash_attn",
action="store_true",
default=False,
help="Use flash-attention",
)
parser.add_argument(
"--use_neft",
action="store_true",
default=False,
help="Use NEFTune",
)
parser.add_argument(
"--freeze_non_embeds_params",
action="store_true",
default=False,
help="Freeze non embeddings parameters",
)
parser.add_argument("--tp", type=int, default=1)
parser.add_argument("--zero", type=int, default=1)
parser.add_argument("--pad_token", choices=["eos", "unk"], default="eos")
parser.add_argument("--padding_mode", choices=["max_length", "longest"], default="max_length")
parser.add_argument(
"--skip_save_each_epoch",
action="store_true",
default=False,
help="skip saving the model checkpoint after each epoch is completed.",
)
args = parser.parse_args()
with open(args.config_file, "w") as f:
json.dump(args.__dict__, f, indent=4)
def train(args) -> None:
# ==============================
# Initialize Distributed Training
# ==============================
@ -147,21 +45,27 @@ def main() -> None:
coordinator = DistCoordinator()
# ==============================
# Initialize Tensorboard
# Initialize Tensorboard and Save Config
# ==============================
if coordinator.is_master():
os.makedirs(args.tensorboard_dir, exist_ok=True)
writer = SummaryWriter(args.tensorboard_dir)
with open(args.config_file, "w") as f:
json.dump(args.__dict__, f, indent=4)
# ==============================
# Initialize Booster
# ==============================
if args.plugin == "gemini":
if args.plugin == "ddp":
plugin = TorchDDPPlugin(find_unused_parameters=True if args.use_grad_checkpoint is False else False)
elif args.plugin == "gemini":
plugin = GeminiPlugin(
precision=args.mixed_precision,
initial_scale=2**16,
max_norm=args.grad_clip,
enable_gradient_accumulation=(args.accumulation_steps > 1),
enable_flash_attention=args.use_flash_attn,
)
elif args.plugin == "gemini_auto":
plugin = GeminiPlugin(
@ -170,6 +74,7 @@ def main() -> None:
initial_scale=2**16,
max_norm=args.grad_clip,
enable_gradient_accumulation=(args.accumulation_steps > 1),
enable_flash_attention=args.use_flash_attn,
)
elif args.plugin == "zero2":
plugin = LowLevelZeroPlugin(
@ -189,10 +94,17 @@ def main() -> None:
elif args.plugin == "3d":
plugin = HybridParallelPlugin(
tp_size=args.tp,
pp_size=1,
zero_stage=args.zero,
pp_size=args.pp,
sp_size=args.sp,
sequence_parallelism_mode=args.sp_mode,
zero_stage=args.zero_stage,
enable_flash_attention=args.use_flash_attn,
enable_sequence_parallelism=args.enable_sequence_parallelism,
cpu_offload=True if args.zero_stage >= 1 and args.zero_cpu_offload else False,
parallel_output=False,
max_norm=args.grad_clip,
precision=args.mixed_precision,
microbatch_size=args.microbatch_size,
)
else:
raise ValueError(f"Unknown plugin {args.plugin}")
@ -210,24 +122,38 @@ def main() -> None:
tokenizer.add_bos_token = False
tokenizer.add_eos_token = False
coordinator.print_on_master(f"Configuration file will be saved at: {args.config_file}")
coordinator.print_on_master(f"Tensorboard logs will be saved at: {args.tensorboard_dir}")
coordinator.print_on_master(f"Model checkpoint will be saved at: {args.save_dir}")
coordinator.print_on_master(f"Load dataset: {args.dataset}")
dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train")
data_collator = DataCollatorForSupervisedDataset(
tokenizer=tokenizer, max_length=args.max_length, padding=args.padding_mode
)
dataloader = plugin.prepare_dataloader(
dataset=dataset,
batch_size=args.micro_batch_size,
shuffle=True,
drop_last=True,
collate_fn=data_collator,
distributed_sampler_cls=StatefulDistributedSampler,
coordinator.print_on_master(
f"Training Info:\nConfig file: {args.config_file} \nTensorboard logs: {args.tensorboard_dir} \nModel checkpoint: {args.save_dir}"
)
if args.benchmark:
coordinator.print_on_master(f"Run benchmark with {args.num_samples} random samples.")
dataset = RandomDataset(
num_samples=args.num_samples, max_length=args.max_length, vocab_size=tokenizer.vocab_size
)
dataloader = plugin.prepare_dataloader(
dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
seed=42,
distributed_sampler_cls=StatefulDistributedSampler,
)
else:
coordinator.print_on_master(f"Load dataset: {args.dataset}")
dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train")
data_collator = DataCollatorForSupervisedDataset(
tokenizer=tokenizer, max_length=args.max_length, padding=args.padding_mode
)
dataloader = plugin.prepare_dataloader(
dataset=dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
collate_fn=data_collator,
distributed_sampler_cls=StatefulDistributedSampler,
)
coordinator.print_on_master(
f"Max device memory after data loader: {accelerator.max_memory_allocated() / 1024 ** 2:.2f} MB"
)
@ -241,7 +167,19 @@ def main() -> None:
else nullcontext()
)
with init_ctx:
model = LlamaForCausalLM.from_pretrained(args.pretrained)
if args.use_flash_attn:
model = AutoModelForCausalLM.from_pretrained(
args.pretrained,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
trust_remote_code=True,
)
else:
model = AutoModelForCausalLM.from_pretrained(
args.pretrained,
torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
trust_remote_code=True,
)
# Freeze part of parameters.
if args.freeze_non_embeds_params:
freeze_non_embeds_parameters(model=model)
@ -251,9 +189,6 @@ def main() -> None:
if args.use_grad_checkpoint:
model.gradient_checkpointing_enable()
coordinator.print_on_master(msg="Gradient checkpointing enabled successfully")
if args.use_flash_attn:
replace_with_flash_attention(model=model)
coordinator.print_on_master(msg="Flash-attention enabled successfully")
model_numel = get_model_numel(model)
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
@ -342,43 +277,98 @@ def main() -> None:
for epoch in range(start_epoch, args.num_epochs):
dataloader.sampler.set_epoch(epoch=epoch)
pbar = tqdm(
desc=f"Epoch {epoch}",
disable=not coordinator.is_master(),
total=num_steps_per_epoch,
initial=start_step // args.accumulation_steps,
)
total_loss = torch.tensor(0.0, device=get_current_device())
for step, batch in enumerate(dataloader, start=start_step):
batch = {k: v.to(get_current_device()) for k, v in batch.items() if isinstance(v, torch.Tensor)}
batch_output = model(**batch)
loss = batch_output.loss / args.accumulation_steps
total_loss.add_(loss.data)
booster.backward(loss=loss, optimizer=optimizer)
if (step + 1) % args.accumulation_steps == 0:
if isinstance(plugin, HybridParallelPlugin) and plugin.pp_size > 1:
data_iter = iter(dataloader)
step_bar = tqdm(
range(len(dataloader)),
desc="Step",
disable=not (coordinator._local_rank == coordinator._world_size - 1),
)
for step in step_bar:
outputs = booster.execute_pipeline(
data_iter,
model,
criterion=lambda outputs, inputs: outputs[0],
optimizer=optimizer,
return_loss=True,
)
loss = outputs["loss"]
if booster.plugin.stage_manager.is_last_stage():
global_loss = all_reduce_mean(loss, plugin)
if coordinator._local_rank == coordinator._world_size - 1:
step_bar.set_postfix({"train/loss": global_loss.item()})
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
all_reduce_mean(tensor=total_loss)
pbar.set_postfix({"Loss": f"{total_loss.item():.4f}"})
if coordinator.is_master():
global_step = (epoch * num_steps_per_epoch) + (step + 1) // args.accumulation_steps
writer.add_scalar(tag="Loss", scalar_value=total_loss.item(), global_step=global_step)
writer.add_scalar(
tag="Learning Rate",
scalar_value=lr_scheduler.get_last_lr()[0],
global_step=global_step,
# Save modeling.
save_model_condition = args.save_interval > 0 and (step + 1) % args.save_interval == 0
if not args.skip_save_each_epoch:
save_model_condition = save_model_condition or (step + 1) == len(dataloader)
if save_model_condition and not args.benchmark:
coordinator.print_on_master("\nStart saving model checkpoint with running states")
if args.use_neft:
coordinator.print_on_master("Deactivate NEFTune before saving model.")
deactivate_neftune(model, handle)
accelerator.empty_cache()
save_checkpoint(
save_dir=args.save_dir,
booster=booster,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
epoch=epoch,
step=step + 1,
batch_size=args.batch_size,
coordinator=coordinator,
)
total_loss.fill_(0.0)
pbar.update()
coordinator.print_on_master(
f"Saved checkpoint at epoch {epoch} step {step + 1} at folder {args.save_dir}"
)
if args.use_neft:
coordinator.print_on_master("Activate NEFTune.")
model, handle = activate_neftune(model)
else:
pbar = tqdm(
desc=f"Epoch {epoch}",
disable=not coordinator.is_master(),
total=num_steps_per_epoch,
initial=start_step // args.accumulation_steps,
)
total_loss = torch.tensor(0.0, device=get_current_device())
for step, batch in enumerate(dataloader, start=start_step):
batch = {k: v.to(get_current_device()) for k, v in batch.items() if isinstance(v, torch.Tensor)}
batch_output = model(**batch)
loss = batch_output.loss / args.accumulation_steps
total_loss.add_(loss.data)
booster.backward(loss=loss, optimizer=optimizer)
if (step + 1) % args.accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
all_reduce_mean(tensor=total_loss)
pbar.set_postfix({"Loss": f"{total_loss.item():.4f}"})
if coordinator.is_master():
global_step = (epoch * num_steps_per_epoch) + (step + 1) // args.accumulation_steps
writer.add_scalar(tag="Loss", scalar_value=total_loss.item(), global_step=global_step)
writer.add_scalar(
tag="Learning Rate",
scalar_value=lr_scheduler.get_last_lr()[0],
global_step=global_step,
)
total_loss.fill_(0.0)
pbar.update()
# Save modeling.
save_model_condition = (
args.save_interval > 0 and (step + 1) % (args.save_interval * args.accumulation_steps) == 0
)
@ -386,7 +376,7 @@ def main() -> None:
if not args.skip_save_each_epoch:
save_model_condition = save_model_condition or (step + 1) == len(dataloader)
if save_model_condition:
if save_model_condition and not args.benchmark:
coordinator.print_on_master("\nStart saving model checkpoint with running states")
if args.use_neft:
@ -402,7 +392,7 @@ def main() -> None:
lr_scheduler=lr_scheduler,
epoch=epoch,
step=step + 1,
batch_size=args.micro_batch_size,
batch_size=args.batch_size,
coordinator=coordinator,
)
coordinator.print_on_master(
@ -426,12 +416,114 @@ def main() -> None:
deactivate_neftune(model, handle)
# Final save.
coordinator.print_on_master("Start saving final model checkpoint")
booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True)
coordinator.print_on_master(f"Saved final model checkpoint at epoch {epoch} at folder {args.save_dir}")
if not args.benchmark:
coordinator.print_on_master("Start saving final model checkpoint")
booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True)
coordinator.print_on_master(f"Saved final model checkpoint at epoch {epoch} at folder {args.save_dir}")
coordinator.print_on_master(f"Max device memory usage: {accelerator.max_memory_allocated()/1024**2:.2f} MB")
if __name__ == "__main__":
main()
parser = argparse.ArgumentParser()
# Basic training information.
parser.add_argument(
"--pretrained",
type=str,
default=None,
help="Address of the pre-trained model",
)
parser.add_argument("--load_checkpoint", type=str, default=None, help="Load checkpoint for continuous training.")
parser.add_argument("--dataset", nargs="+", default=[])
parser.add_argument(
"--plugin",
type=str,
default="gemini",
choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d", "ddp"],
help="Choose which plugin to use",
)
parser.add_argument("--save_interval", type=int, default=1000, help="Save interval")
parser.add_argument("--save_dir", type=str, default="checkpoint_dir", help="Checkpoint directory")
parser.add_argument("--tensorboard_dir", type=str, default="logs_dir", help="Tensorboard directory")
parser.add_argument("--config_file", type=str, default="config_file", help="Config file")
# Training parameters
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
parser.add_argument("--accumulation_steps", type=int, default=1, help="Number of accumulation steps")
parser.add_argument("--batch_size", type=int, default=2, help="Global Batch size of each process")
parser.add_argument("--lr", type=float, default=3e-4, help="Learning rate")
parser.add_argument("--max_length", type=int, default=8192, help="Model max length")
parser.add_argument(
"--mixed_precision",
type=str,
default="fp16",
choices=["fp16", "bf16"],
help="Mixed precision",
)
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value")
parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay")
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
parser.add_argument(
"--use_grad_checkpoint",
action="store_true",
default=False,
help="Use gradient checkpointing",
)
parser.add_argument(
"--use_flash_attn",
action="store_true",
default=False,
help="Use flash-attention",
)
parser.add_argument(
"--use_neft",
action="store_true",
default=False,
help="Use NEFTune",
)
parser.add_argument(
"--freeze_non_embeds_params",
action="store_true",
default=False,
help="Freeze non embeddings parameters",
)
parser.add_argument("--pad_token", choices=["eos", "unk"], default="eos")
parser.add_argument("--padding_mode", choices=["max_length", "longest"], default="max_length")
parser.add_argument(
"--skip_save_each_epoch",
action="store_true",
default=False,
help="Skip saving the model checkpoint after each epoch is completed.",
)
# Additional arguments for 3d plugin.
parser.add_argument("--tp", type=int, default=1, help="TP size, used for 3d plugin.")
parser.add_argument("--pp", type=int, default=1, help="PP size, used for 3d plugin.")
parser.add_argument("--sp", type=int, default=1, help="SP size, used for 3d plugin.")
parser.add_argument("--zero_stage", type=int, default=0, help="Zero stage, used for 3d plugin.", choices=[0, 1, 2])
parser.add_argument(
"--sp_mode",
type=str,
default="split_gather",
choices=["split_gather", "ring", "all_to_all"],
help="SP mode, used for 3d plugin.",
)
parser.add_argument(
"--enable_sequence_parallelism",
default=False,
action="store_true",
help="Whether to enable SP, used for 3d plugin.",
)
parser.add_argument(
"--zero_cpu_offload", default=False, action="store_true", help="Whether to use offloading, used for 3d plugin."
)
parser.add_argument(
"--microbatch_size", type=int, default=1, help="Batch size for each process in PP, used for 3d plugin."
)
# Additional arguments for benchmark.
parser.add_argument("--num_samples", type=int, default=500, help="Number of samples for benchmarking.")
parser.add_argument(
"--benchmark", action="store_true", default=False, help="Benchmark performance using random dataset."
)
args = parser.parse_args()
train(args)

View File

@ -1 +1 @@
1.0.0
1.1.0