[booster] add low level zero plugin (#3594)

* [booster] add low level zero plugin

* [booster] fix gemini plugin test

* [booster] fix precision

* [booster] add low level zero plugin test

* [test] fix booster plugin test oom

* [test] fix booster plugin test oom

* [test] fix googlenet and inception output trans

* [test] fix diffuser clip vision model

* [test] fix torchaudio_wav2vec2_base

* [test] fix low level zero plugin test
This commit is contained in:
Hongxin Liu
2023-04-26 14:37:25 +08:00
committed by GitHub
parent b9a8dff7e5
commit 4b3240cb59
9 changed files with 476 additions and 81 deletions

View File

@@ -18,6 +18,7 @@ data_vae_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32))
data_unet_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32), timestep=3)
identity_output = lambda x: x
clip_vision_model_output = lambda x: dict(pooler_output=x[1])
def data_clip_model():
@@ -65,7 +66,7 @@ model_zoo.register(name='diffusers_clip_text_model',
model_zoo.register(name='diffusers_clip_vision_model',
model_fn=partial(transformers.CLIPVisionModel, config=transformers.CLIPVisionConfig()),
data_gen_fn=data_clip_vision,
output_transform_fn=identity_output)
output_transform_fn=clip_vision_model_output)
model_zoo.register(name='diffusers_unet2d_model',
model_fn=diffusers.UNet2DModel,

View File

@@ -1,3 +1,5 @@
from functools import partial
import torch
import torchaudio.models as tm
@@ -101,13 +103,11 @@ def tacotron_data_gen_fn():
mel_specgram_lengths=mel_specgram_lengths)
model_zoo.register(
name='torchaudio_tacotron',
model_fn=lambda: tm.Tacotron2(n_mels=N_MELS),
data_gen_fn=tacotron_data_gen_fn,
output_transform_fn=lambda outputs: dict(
spectrogram_before=outputs[0], spectrogram_after=outputs[1], stop_tokens=outputs[2], attn_weights=outputs[3]),
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='torchaudio_tacotron',
model_fn=lambda: tm.Tacotron2(n_mels=N_MELS),
data_gen_fn=tacotron_data_gen_fn,
output_transform_fn=lambda outputs: dict(summed_output=sum(x.sum() for x in outputs)),
model_attribute=ModelAttribute(has_control_flow=True))
def wav2vec_data_gen_fn():
@@ -118,7 +118,7 @@ def wav2vec_data_gen_fn():
model_zoo.register(name='torchaudio_wav2vec2_base',
model_fn=tm.wav2vec2_base,
model_fn=partial(tm.wav2vec2_base, encoder_layer_drop=0.0),
data_gen_fn=wav2vec_data_gen_fn,
output_transform_fn=transformer_output_transform_fn,
model_attribute=ModelAttribute(has_control_flow=True))

View File

@@ -36,12 +36,12 @@ def swin_s():
# special output transform fn
google_net_output_transform_fn = lambda x: dict(output=x.logits) if isinstance(x, torchvision.models.GoogLeNetOutputs
) else dict(output=x)
google_net_output_transform_fn = lambda x: dict(output=sum(x)) if isinstance(x, torchvision.models.GoogLeNetOutputs
) else dict(output=x)
swin_s_output_output_transform_fn = lambda x: {f'output{idx}': val
for idx, val in enumerate(x)} if isinstance(x, tuple) else dict(output=x)
inception_v3_output_transform_fn = lambda x: dict(output=x.logits) if isinstance(x, torchvision.models.InceptionOutputs
) else dict(output=x)
inception_v3_output_transform_fn = lambda x: dict(output=sum(x)) if isinstance(x, torchvision.models.InceptionOutputs
) else dict(output=x)
model_zoo.register(name='torchvision_alexnet',
model_fn=tm.alexnet,

View File

@@ -1,4 +1,5 @@
from contextlib import nullcontext
from typing import Optional
import torch
import torch.distributed as dist
@@ -10,11 +11,53 @@ from colossalai.fx import is_compatible_with_meta
from colossalai.nn.optimizer import HybridAdam
from colossalai.tensor.colo_parameter import ColoParameter
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils.model.experimental import LazyInitContext
from colossalai.zero import ColoInitContext
from tests.kit.model_zoo import model_zoo
@parameterize('init_method', ['lazy', 'none', 'colo'])
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
try:
if init_method == 'colo':
ctx = ColoInitContext()
elif init_method == 'lazy':
ctx = LazyInitContext()
else:
ctx = nullcontext()
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, max_norm=1.0, initial_scale=2**5)
booster = Booster(plugin=plugin)
with ctx:
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
for n, p in model.named_parameters():
assert isinstance(p, ColoParameter), f'{n} is not a ColoParameter'
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
except Exception as e:
return repr(e)
# TODO(ver217): CI does not support lazy now
# @parameterize('init_method', ['lazy', 'none', 'colo'])
@parameterize('init_method', ['none'])
def check_gemini_plugin(init_method: str = 'none', early_stop: bool = True):
"""check gemini plugin over model zoo
@@ -25,7 +68,6 @@ def check_gemini_plugin(init_method: str = 'none', early_stop: bool = True):
if not is_support_meta and init_method == 'lazy':
return
from colossalai.utils.model.experimental import LazyInitContext
passed_models = []
failed_info = {} # (model_name, error) pair
@@ -58,48 +100,16 @@ def check_gemini_plugin(init_method: str = 'none', early_stop: bool = True):
]:
continue
try:
if init_method == 'colo':
ctx = ColoInitContext()
elif init_method == 'lazy':
ctx = LazyInitContext()
else:
ctx = nullcontext()
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, max_norm=1.0, initial_scale=2**5)
booster = Booster(plugin=plugin)
with ctx:
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v
for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
for n, p in model.named_parameters():
assert isinstance(p, ColoParameter), f'{n} is not a ColoParameter'
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
passed_models.append(name)
del booster, plugin, model, optimizer, criterion, data, output, loss
except Exception as e:
failed_info[name] = e
if early_stop:
raise e
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn)
torch.cuda.empty_cache()
if err is None:
passed_models.append(name)
else:
failed_info[name] = err
if early_stop:
break
if dist.get_rank() == 0:
print(f'Init method: {init_method}')
print(f'Passed models({len(passed_models)}): {passed_models}\n\n')
@@ -140,7 +150,7 @@ def run_dist(rank, world_size, port, early_stop: bool = True):
@rerun_if_address_is_in_use()
def test_gemini_plugin(early_stop: bool = True):
spawn(run_dist, 2, early_stop=early_stop)
spawn(run_dist, 4, early_stop=early_stop)
if __name__ == '__main__':

View File

@@ -0,0 +1,122 @@
from typing import Optional
import torch
import torch.distributed as dist
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
# These models are not compatible with AMP
_AMP_ERR_MODELS = ['timm_convit', 'dlrm', 'deepfm_interactionarch', 'deepfm_simpledeepfmnn`']
# These models have no parameters
_LOW_LEVEL_ZERO_ERR_MODELS = ['dlrm_interactionarch']
# These models will get stuck
_STUCK_MODELS = [
'diffusers_vq_model', 'transformers_albert', 'transformers_albert_for_pretraining', 'transformers_bert',
'transformers_bert_for_pretraining', 'transformers_gpt_double_heads'
]
def run_fn(stage, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
try:
plugin = LowLevelZeroPlugin(stage=stage, max_norm=1.0, initial_scale=2**5)
booster = Booster(plugin=plugin)
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
except Exception as e:
return repr(e)
@parameterize('stage', [2])
def check_low_level_zero_plugin(stage: int, early_stop: bool = True):
"""check low level zero plugin over model zoo
Args:
stage (int), stage of low level zero plugin
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
"""
passed_models = []
failed_info = {} # (model_name, error) pair
ignore_models = _AMP_ERR_MODELS + _LOW_LEVEL_ZERO_ERR_MODELS + _STUCK_MODELS
skipped_models = []
for name, (model_fn, data_gen_fn, output_transform_fn, _) in model_zoo.items():
# FIXME(ver217): fix these models
if name in ignore_models:
skipped_models.append(name)
continue
err = run_fn(stage, model_fn, data_gen_fn, output_transform_fn)
torch.cuda.empty_cache()
if err is None:
passed_models.append(name)
else:
failed_info[name] = err
if early_stop:
break
if dist.get_rank() == 0:
print(f'Passed models({len(passed_models)}): {passed_models}\n\n')
print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n')
print(f'Skipped models({len(skipped_models)}): {skipped_models}\n\n')
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
def check_dataloader_sharding():
plugin = LowLevelZeroPlugin()
# create a custom dasetset with 0 to 10
dataset = torch.utils.data.TensorDataset(torch.arange(0, 10))
train_dataloader = plugin.prepare_train_dataloader(dataset, batch_size=2)
# get the first batch of data
batch = next(iter(train_dataloader))[0].cuda()
is_rank_0 = dist.get_rank() == 0
if is_rank_0:
batch_to_compare = batch.clone()
else:
batch_to_compare = batch
# pass to the rank 1 value to rank 0
dist.broadcast(batch_to_compare, src=1)
# compare on rank 0
if is_rank_0:
assert not torch.equal(batch,
batch_to_compare), 'Same number was found across ranks but expected it to be different'
def run_dist(rank, world_size, port, early_stop: bool = True):
# init dist env
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
check_low_level_zero_plugin(early_stop=early_stop)
@rerun_if_address_is_in_use()
def test_low_level_zero_plugin(early_stop: bool = True):
spawn(run_dist, 2, early_stop=early_stop)
if __name__ == '__main__':
test_low_level_zero_plugin(early_stop=False)

View File

@@ -11,36 +11,37 @@ from colossalai.testing import rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
def check_torch_ddp_plugin():
def run_fn(model_fn, data_gen_fn, output_transform_fn):
plugin = TorchDDPPlugin()
booster = Booster(plugin=plugin)
model = model_fn()
optimizer = SGD(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
assert isinstance(model.module, DDP)
assert isinstance(optimizer, OptimizerWrapper)
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.clip_grad_by_norm(1.0)
optimizer.step()
def check_torch_ddp_plugin():
for name, (model_fn, data_gen_fn, output_transform_fn, _) in model_zoo.items():
if name == 'dlrm_interactionarch':
continue
model = model_fn()
optimizer = SGD(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
assert isinstance(model.module, DDP)
assert isinstance(optimizer, OptimizerWrapper)
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.clip_grad_by_norm(1.0)
optimizer.step()
run_fn(model_fn, data_gen_fn, output_transform_fn)
torch.cuda.empty_cache()
def check_dataloader_sharding():