address conversation

This commit is contained in:
YeAnbang 2025-05-28 17:34:11 +08:00
parent 78a06f5ce3
commit 4c3656870a
2 changed files with 17 additions and 20 deletions

View File

@ -117,14 +117,12 @@ class BaseConsumer:
# receive data from producers # receive data from producers
for r in range(self.num_producers): for r in range(self.num_producers):
print(f"[T{dist.get_rank()}] Recv data episode {episode} step {step} from {r}") print(f"[T{dist.get_rank()}] Recv data episode {episode} step {step} from {r}")
raw_batch = unbind_batch( raw_batch = ray_broadcast_tensor_dict(None, src=0, device=self.device, group_name=f"sync_data_{r}")
ray_broadcast_tensor_dict(None, src=0, device=self.device, group_name=f"sync_data_{r}")
)
recv_effective_count = 0 recv_effective_count = 0
# calculate group reward et al. filtering. As only the filtered group will be used for training (which is incomplete), # calculate group reward et al. filtering. As only the filtered group will be used for training (which is incomplete),
# we need to calculate the metrics before filtering here for logging # we need to calculate the metrics before filtering here for logging
for group in raw_batch: raw_batch_with_reward = unbind_batch(self.calculate_reward(raw_batch))
group_with_reward = self.calculate_group_reward(group) for group_with_reward in raw_batch_with_reward:
group_reward_mean = group_with_reward["reward"].mean().cpu().item() group_reward_mean = group_with_reward["reward"].mean().cpu().item()
group_format_acc_mean = group_with_reward["format_acc"].mean().cpu().item() group_format_acc_mean = group_with_reward["format_acc"].mean().cpu().item()
group_ans_acc_mean = group_with_reward["ans_acc"].mean().cpu().item() group_ans_acc_mean = group_with_reward["ans_acc"].mean().cpu().item()
@ -139,6 +137,7 @@ class BaseConsumer:
.cpu() .cpu()
.item() .item()
) )
if self.grpo_config.get("dynamic_batching", True):
filtered_group = self.prompt_level_filtering(group_with_reward) filtered_group = self.prompt_level_filtering(group_with_reward)
recv_effective_count += 1 if filtered_group is not None else 0 recv_effective_count += 1 if filtered_group is not None else 0
self.buffer.append( self.buffer.append(

View File

@ -218,8 +218,6 @@ class GRPOConsumer(BaseConsumer):
if self.grpo_config.get("dynamic_batching", True): if self.grpo_config.get("dynamic_batching", True):
need_update = self.effective_prompt_count >= self.batch_size * self.dp_size need_update = self.effective_prompt_count >= self.batch_size * self.dp_size
excessive_prompts = self.effective_prompt_count - self.batch_size * self.dp_size
assert excessive_prompts <= 0, "Debug: Excessive prompts should always be less than 0. Bug!!!!"
else: else:
# If dynamic batching is disabled, we need to use all samples for training. # If dynamic batching is disabled, we need to use all samples for training.
need_update = (step_idx + 1) % self.num_microbatches == 0 need_update = (step_idx + 1) % self.num_microbatches == 0
@ -488,7 +486,7 @@ class GRPOConsumer(BaseConsumer):
else: else:
return None return None
def calculate_group_reward(self, rollout_group: Dict[str, Any]) -> Dict[str, Any]: def calculate_reward(self, rollout: Dict[str, Any]) -> Dict[str, Any]:
""" """
Calculate the group reward for the given rollout group. Calculate the group reward for the given rollout group.
@ -507,20 +505,20 @@ class GRPOConsumer(BaseConsumer):
Returns: Returns:
Dict[str, Any]: The new group data with calculated reward. Dict[str, Any]: The new group data with calculated reward.
""" """
reward_group = self.reward_model( reward_model_output = self.reward_model(
rollout_group["input_ids"], rollout["input_ids"],
gt_answer=rollout_group["gt_answer"], gt_answer=rollout["gt_answer"],
response_idx=rollout_group["response_idx"], response_idx=rollout["response_idx"],
) )
# [num_of_generation] # [num_of_generation]
reward = torch.tensor([value[0] for value in reward_group]).to(rollout_group["input_ids"].device) reward = torch.tensor([value[0] for value in reward_model_output]).to(rollout["input_ids"].device)
format_acc = torch.tensor([value[1] for value in reward_group]).to(rollout_group["input_ids"].device) format_acc = torch.tensor([value[1] for value in reward_model_output]).to(rollout["input_ids"].device)
ans_acc = torch.tensor([value[2] for value in reward_group]).to(rollout_group["input_ids"].device) ans_acc = torch.tensor([value[2] for value in reward_model_output]).to(rollout["input_ids"].device)
rollout_group["reward"] = reward.view((-1, 1)) rollout["reward"] = reward.view((-1, 1))
rollout_group["format_acc"] = format_acc.view((-1, 1)) rollout["format_acc"] = format_acc.view((-1, 1))
rollout_group["ans_acc"] = ans_acc.view((-1, 1)) rollout["ans_acc"] = ans_acc.view((-1, 1))
return rollout_group return rollout
def prompt_level_filtering(self, rollout_group: Dict[str, Any]) -> Dict[str, Any]: def prompt_level_filtering(self, rollout_group: Dict[str, Any]) -> Dict[str, Any]:
""" """