[example] llama2 add fine-tune example (#4673)

* [shardformer] update shardformer readme

[shardformer] update shardformer readme

[shardformer] update shardformer readme

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] update llama2/opt finetune example and shardformer update to llama2

* [shardformer] change dataset

* [shardformer] change dataset

* [shardformer] fix CI

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

* [shardformer] fix

[example] update opt example

[example] resolve comments

fix

fix

* [example] llama2 add finetune example

* [example] llama2 add finetune example

* [example] llama2 add finetune example

* [example] llama2 add finetune example

* fix

* update llama2 example

* update llama2 example

* fix

* update llama2 example

* update llama2 example

* update llama2 example

* update llama2 example

* update llama2 example

* update llama2 example

* Update requirements.txt

* update llama2 example

* update llama2 example

* update llama2 example
This commit is contained in:
flybird11111
2023-09-15 18:45:44 +08:00
committed by GitHub
parent ac2797996b
commit 4c4482f3ad
8 changed files with 402 additions and 35 deletions

View File

@@ -23,9 +23,9 @@ The following example of [Colossal-AI](https://github.com/hpcaitech/ColossalAI)
## Our Modifications
We are using the pre-training weights of the OPT model provided by Hugging Face Hub on the raw WikiText-2 (no tokens were replaced before
the tokenization).
the tokenization).
We adapt the OPT training code to ColossalAI by leveraging [Boosting API](https://colossalai.org/docs/basics/booster_api) loaded with a chosen plugin, where each plugin corresponds to a specific kind of training strategy. This example supports plugins including TorchDDPPlugin, LowLevelZeroPlugin, and GeminiPlugin.
We adapt the OPT training code to ColossalAI by leveraging [Boosting API](https://colossalai.org/docs/basics/booster_api) loaded with a chosen plugin, where each plugin corresponds to a specific kind of training strategy. This example supports plugins including TorchDDPPlugin, LowLevelZeroPlugin, HybridParallelPlugin and GeminiPlugin.
## Run Demo
@@ -48,6 +48,3 @@ You can run benchmark for OPT model by running the following script:
bash run_benchmark.sh
```
The script will test performance (throughput & peak memory usage) for each combination of hyperparameters. You can also play with this script to configure your set of hyperparameters for testing.