mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 03:20:52 +00:00
[Coati] Train DPO using PP (#6054)
* update dpo * remove unsupport plugin * update msg * update dpo * remove unsupport plugin * update msg * update template * update dataset * add pp for dpo * update dpo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add dpo fn * update dpo * update dpo * update dpo * update dpo * minor update * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update loss * update help * polish code --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -6,6 +6,7 @@ import os
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from coati.models.loss import DpoLoss
|
||||
from coati.models.utils import calc_masked_log_probs
|
||||
from coati.trainer.utils import all_reduce_mean
|
||||
@@ -13,10 +14,11 @@ from coati.utils import AccumulativeMeanMeter, save_checkpoint
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import trange
|
||||
from tqdm import tqdm, trange
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
|
||||
from colossalai.booster import Booster, Plugin
|
||||
from colossalai.booster.plugin import HybridParallelPlugin
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
@@ -96,18 +98,25 @@ class DPOTrainer(SLTrainer):
|
||||
self.train_dataloader = train_preference_dataloader
|
||||
self.eval_dataloader = eval_preference_dataloader
|
||||
self.writer = None
|
||||
if use_wandb and is_rank_0():
|
||||
|
||||
init_criterion = (
|
||||
dist.get_rank() == dist.get_world_size() - 1
|
||||
if isinstance(self.plugin, HybridParallelPlugin) and self.plugin.pp_size > 1
|
||||
else is_rank_0()
|
||||
)
|
||||
|
||||
if use_wandb and init_criterion:
|
||||
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
|
||||
import wandb
|
||||
|
||||
self.wandb_run = wandb.init(project="Coati-dpo", sync_tensorboard=True)
|
||||
if log_dir is not None and is_rank_0():
|
||||
if log_dir is not None and init_criterion:
|
||||
import os
|
||||
import time
|
||||
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
log_dir = os.path.join(log_dir, "dpo")
|
||||
log_dir = os.path.join(log_dir, "DPO")
|
||||
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
|
||||
self.writer = SummaryWriter(log_dir=log_dir)
|
||||
|
||||
@@ -117,166 +126,147 @@ class DPOTrainer(SLTrainer):
|
||||
epoch int: the number of current epoch
|
||||
"""
|
||||
self.model.train()
|
||||
self.accumulative_meter.reset()
|
||||
step_bar = trange(
|
||||
len(self.train_dataloader) // self.accumulation_steps,
|
||||
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
|
||||
disable=not is_rank_0(),
|
||||
)
|
||||
for i, batch in enumerate(self.train_dataloader):
|
||||
batch = to_device(batch, self.device)
|
||||
(
|
||||
chosen_input_ids,
|
||||
chosen_attention_mask,
|
||||
chosen_loss_mask,
|
||||
reject_input_ids,
|
||||
reject_attention_mask,
|
||||
reject_loss_mask,
|
||||
) = (
|
||||
batch["chosen_input_ids"],
|
||||
batch["chosen_attention_mask"],
|
||||
batch["chosen_loss_mask"],
|
||||
batch["reject_input_ids"],
|
||||
batch["reject_attention_mask"],
|
||||
batch["reject_loss_mask"],
|
||||
if isinstance(self.plugin, HybridParallelPlugin) and self.plugin.pp_size > 1:
|
||||
step_bar = tqdm(
|
||||
range(len(self.train_dataloader)),
|
||||
desc="Step",
|
||||
disable=not (dist.get_rank() == dist.get_world_size() - 1),
|
||||
)
|
||||
if not self.apply_loss_mask:
|
||||
chosen_loss_mask = chosen_loss_mask.fill_(1.0)
|
||||
reject_loss_mask = reject_loss_mask.fill_(1.0)
|
||||
for i, batch in enumerate(self.train_dataloader):
|
||||
batch = to_device(batch, self.device)
|
||||
(
|
||||
chosen_input_ids,
|
||||
chosen_attention_mask,
|
||||
chosen_loss_mask,
|
||||
reject_input_ids,
|
||||
reject_attention_mask,
|
||||
reject_loss_mask,
|
||||
) = (
|
||||
batch["chosen_input_ids"],
|
||||
batch["chosen_attention_mask"],
|
||||
batch["chosen_loss_mask"],
|
||||
batch["reject_input_ids"],
|
||||
batch["reject_attention_mask"],
|
||||
batch["reject_loss_mask"],
|
||||
)
|
||||
batch_size = chosen_input_ids.size()[0]
|
||||
# Calculate logits from reference model.
|
||||
if self.ref_model is not None:
|
||||
self.ref_model.eval()
|
||||
with torch.no_grad():
|
||||
ref_all_logits = self.ref_model(
|
||||
input_ids=torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)["logits"]
|
||||
ref_chosen_logits = ref_all_logits[:batch_size]
|
||||
ref_reject_logits = ref_all_logits[batch_size:]
|
||||
logprob_ref_chosen = calc_masked_log_probs(
|
||||
ref_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
logprob_ref_reject = calc_masked_log_probs(
|
||||
ref_reject_logits, reject_input_ids, reject_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
else:
|
||||
logprob_ref_chosen = None
|
||||
logprob_ref_reject = None
|
||||
|
||||
batch_size = chosen_input_ids.size()[0]
|
||||
# Merge chosen and reject
|
||||
inputs_ids = torch.stack([item for tup in zip(chosen_input_ids, reject_input_ids) for item in tup])
|
||||
attention_mask = torch.stack(
|
||||
[item for tup in zip(chosen_attention_mask, reject_attention_mask) for item in tup]
|
||||
)
|
||||
loss_mask = torch.stack([item for tup in zip(chosen_loss_mask, reject_loss_mask) for item in tup])
|
||||
logprob_ref = torch.stack([item for tup in zip(logprob_ref_chosen, logprob_ref_reject) for item in tup])
|
||||
|
||||
actor_all_logits = self.model(
|
||||
input_ids=torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)["logits"]
|
||||
actor_chosen_logits = actor_all_logits[:batch_size]
|
||||
actor_reject_logits = actor_all_logits[batch_size:]
|
||||
logprob_actor_chosen = calc_masked_log_probs(
|
||||
actor_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
data_iter = iter(
|
||||
[
|
||||
{
|
||||
"input_ids": inputs_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"loss_mask": loss_mask,
|
||||
"logprob_ref": logprob_ref,
|
||||
}
|
||||
]
|
||||
)
|
||||
rewards = []
|
||||
|
||||
logprob_actor_reject = calc_masked_log_probs(
|
||||
actor_reject_logits, reject_input_ids, reject_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
|
||||
if self.ref_model is not None:
|
||||
self.ref_model.eval()
|
||||
with torch.no_grad():
|
||||
ref_all_logits = self.ref_model(
|
||||
input_ids=torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)["logits"]
|
||||
ref_chosen_logits = ref_all_logits[:batch_size]
|
||||
ref_reject_logits = ref_all_logits[batch_size:]
|
||||
logprob_ref_chosen = calc_masked_log_probs(
|
||||
ref_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:], self.length_normalization
|
||||
def _criterion(outputs, inputs):
|
||||
loss, chosen_rewards, rejected_rewards = self.actor_loss_fn(
|
||||
calc_masked_log_probs(
|
||||
outputs["logits"][0::2],
|
||||
inputs["input_ids"][0::2],
|
||||
inputs["loss_mask"][0::2][:, 1:],
|
||||
self.length_normalization,
|
||||
),
|
||||
calc_masked_log_probs(
|
||||
outputs["logits"][1::2],
|
||||
inputs["input_ids"][1::2],
|
||||
inputs["loss_mask"][1::2][:, 1:],
|
||||
self.length_normalization,
|
||||
),
|
||||
inputs["logprob_ref"][0::2] if inputs["logprob_ref"] is not None else None,
|
||||
inputs["logprob_ref"][1::2] if inputs["logprob_ref"] is not None else None,
|
||||
inputs["loss_mask"][0::2][:, 1:],
|
||||
inputs["loss_mask"][1::2][:, 1:],
|
||||
)
|
||||
logprob_ref_reject = calc_masked_log_probs(
|
||||
ref_reject_logits, reject_input_ids, reject_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
else:
|
||||
logprob_ref_chosen = None
|
||||
logprob_ref_reject = None
|
||||
rewards.append(chosen_rewards)
|
||||
rewards.append(rejected_rewards)
|
||||
return loss
|
||||
|
||||
losses, chosen_rewards, rejected_rewards = self.actor_loss_fn(
|
||||
logprob_actor_chosen,
|
||||
logprob_actor_reject,
|
||||
logprob_ref_chosen if logprob_ref_chosen is not None else None,
|
||||
logprob_ref_reject if logprob_ref_reject is not None else None,
|
||||
chosen_loss_mask[:, 1:],
|
||||
reject_loss_mask[:, 1:],
|
||||
)
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float().mean()
|
||||
outputs = self.booster.execute_pipeline(
|
||||
data_iter,
|
||||
self.model,
|
||||
criterion=_criterion,
|
||||
optimizer=self.optimizer,
|
||||
return_loss=True,
|
||||
)
|
||||
loss = outputs["loss"]
|
||||
if self.booster.plugin.stage_manager.is_last_stage():
|
||||
chosen_rewards, rejected_rewards = rewards[0], rewards[1]
|
||||
global_loss = all_reduce_mean(loss, self.plugin)
|
||||
if dist.get_rank() == dist.get_world_size() - 1:
|
||||
step_bar.set_postfix(
|
||||
{
|
||||
"train/loss": global_loss.item(),
|
||||
"train/lr": self.actor_scheduler.get_last_lr()[0],
|
||||
"train/chosen_rewards": chosen_rewards.to(torch.float16).mean().item(),
|
||||
"train/rejected_rewards": rejected_rewards.to(torch.float16).mean().item(),
|
||||
}
|
||||
)
|
||||
step_bar.update()
|
||||
self.accumulative_meter.add("loss", global_loss.item())
|
||||
self.accumulative_meter.add("chosen_rewards", chosen_rewards.to(torch.float16).mean().item())
|
||||
self.accumulative_meter.add(
|
||||
"rejected_rewards", rejected_rewards.to(torch.float16).mean().item()
|
||||
)
|
||||
if self.writer is not None:
|
||||
self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), i)
|
||||
self.writer.add_scalar(
|
||||
"train/chosen_rewards", self.accumulative_meter.get("chosen_rewards"), i
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/rejected_rewards",
|
||||
self.accumulative_meter.get("rejected_rewards"),
|
||||
i,
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/margin",
|
||||
self.accumulative_meter.get("chosen_rewards")
|
||||
- self.accumulative_meter.get("rejected_rewards"),
|
||||
i,
|
||||
)
|
||||
|
||||
# DPO Loss
|
||||
loss = losses.mean()
|
||||
|
||||
self.booster.backward(loss=loss, optimizer=self.optimizer)
|
||||
if self.num_train_step % self.accumulation_steps == self.accumulation_steps - 1:
|
||||
self.optimizer.step()
|
||||
self.optimizer.zero_grad()
|
||||
self.actor_scheduler.step()
|
||||
|
||||
# sync
|
||||
loss_mean = all_reduce_mean(tensor=loss)
|
||||
chosen_rewards_mean = all_reduce_mean(tensor=chosen_rewards)
|
||||
rejected_rewards_mean = all_reduce_mean(tensor=rejected_rewards)
|
||||
reward_accuracies_mean = all_reduce_mean(tensor=reward_accuracies)
|
||||
self.accumulative_meter.add("chosen_rewards", chosen_rewards_mean.to(torch.float16).mean().item())
|
||||
self.accumulative_meter.add("rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item())
|
||||
self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item())
|
||||
self.accumulative_meter.add("accuracy", reward_accuracies_mean.to(torch.float16).item())
|
||||
|
||||
if i % self.accumulation_steps == self.accumulation_steps - 1:
|
||||
self.num_train_step += 1
|
||||
step_bar.update()
|
||||
# logging
|
||||
if self.writer and is_rank_0():
|
||||
self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), self.num_train_step)
|
||||
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step)
|
||||
self.writer.add_scalar(
|
||||
"train/chosen_rewards", self.accumulative_meter.get("chosen_rewards"), self.num_train_step
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/rejected_rewards",
|
||||
self.accumulative_meter.get("rejected_rewards"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/margin",
|
||||
self.accumulative_meter.get("chosen_rewards") - self.accumulative_meter.get("rejected_rewards"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/accuracy",
|
||||
self.accumulative_meter.get("accuracy"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.accumulative_meter.reset()
|
||||
|
||||
if self.save_dir is not None and (self.num_train_step + 1) % self.save_interval == 0:
|
||||
# save checkpoint
|
||||
self.coordinator.print_on_master("\nStart saving model checkpoint with running states")
|
||||
save_checkpoint(
|
||||
save_dir=self.save_dir,
|
||||
booster=self.booster,
|
||||
model=self.model,
|
||||
optimizer=self.optimizer,
|
||||
lr_scheduler=self.actor_scheduler,
|
||||
epoch=epoch,
|
||||
step=i + 1,
|
||||
batch_size=batch_size,
|
||||
coordinator=self.coordinator,
|
||||
)
|
||||
self.coordinator.print_on_master(
|
||||
f"Saved checkpoint at epoch {epoch} step {self.save_interval} at folder {self.save_dir}"
|
||||
)
|
||||
|
||||
step_bar.close()
|
||||
|
||||
def _eval(self, epoch: int):
|
||||
"""
|
||||
Args:
|
||||
epoch int: the number of current epoch
|
||||
"""
|
||||
if self.eval_dataloader is None:
|
||||
self.coordinator.print_on_master("No eval dataloader is provided, skip evaluation")
|
||||
return
|
||||
self.model.eval()
|
||||
self.ref_model.eval()
|
||||
self.coordinator.print_on_master("\nStart evaluation...")
|
||||
|
||||
step_bar = trange(
|
||||
len(self.eval_dataloader),
|
||||
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
|
||||
disable=not is_rank_0(),
|
||||
)
|
||||
|
||||
self.accumulative_meter.reset()
|
||||
|
||||
with torch.no_grad():
|
||||
for i, batch in enumerate(self.eval_dataloader):
|
||||
else:
|
||||
self.accumulative_meter.reset()
|
||||
step_bar = trange(
|
||||
len(self.train_dataloader) // self.accumulation_steps,
|
||||
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
|
||||
disable=not is_rank_0(),
|
||||
)
|
||||
for i, batch in enumerate(self.train_dataloader):
|
||||
batch = to_device(batch, self.device)
|
||||
(
|
||||
chosen_input_ids,
|
||||
@@ -300,12 +290,11 @@ class DPOTrainer(SLTrainer):
|
||||
batch_size = chosen_input_ids.size()[0]
|
||||
|
||||
actor_all_logits = self.model(
|
||||
torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
input_ids=torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)["logits"]
|
||||
actor_chosen_logits = actor_all_logits[:batch_size]
|
||||
actor_reject_logits = actor_all_logits[batch_size:]
|
||||
|
||||
logprob_actor_chosen = calc_masked_log_probs(
|
||||
actor_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
@@ -314,22 +303,26 @@ class DPOTrainer(SLTrainer):
|
||||
actor_reject_logits, reject_input_ids, reject_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
|
||||
self.ref_model.eval()
|
||||
if self.ref_model is not None:
|
||||
self.ref_model.eval()
|
||||
with torch.no_grad():
|
||||
ref_all_logits = self.ref_model(
|
||||
input_ids=torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)["logits"]
|
||||
ref_chosen_logits = ref_all_logits[:batch_size]
|
||||
ref_reject_logits = ref_all_logits[batch_size:]
|
||||
logprob_ref_chosen = calc_masked_log_probs(
|
||||
ref_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
logprob_ref_reject = calc_masked_log_probs(
|
||||
ref_reject_logits, reject_input_ids, reject_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
else:
|
||||
logprob_ref_chosen = None
|
||||
logprob_ref_reject = None
|
||||
|
||||
ref_all_logits = self.ref_model(
|
||||
torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)["logits"]
|
||||
ref_chosen_logits = ref_all_logits[:batch_size]
|
||||
ref_reject_logits = ref_all_logits[batch_size:]
|
||||
logprob_ref_chosen = calc_masked_log_probs(
|
||||
ref_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
logprob_ref_reject = calc_masked_log_probs(
|
||||
ref_reject_logits, reject_input_ids, reject_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
|
||||
losses, chosen_rewards, rejected_rewards = self.actor_loss_fn(
|
||||
loss, chosen_rewards, rejected_rewards = self.actor_loss_fn(
|
||||
logprob_actor_chosen,
|
||||
logprob_actor_reject,
|
||||
logprob_ref_chosen if logprob_ref_chosen is not None else None,
|
||||
@@ -338,7 +331,9 @@ class DPOTrainer(SLTrainer):
|
||||
reject_loss_mask[:, 1:],
|
||||
)
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float().mean()
|
||||
loss = losses.mean()
|
||||
|
||||
self.booster.backward(loss=loss, optimizer=self.optimizer)
|
||||
# sync
|
||||
loss_mean = all_reduce_mean(tensor=loss)
|
||||
chosen_rewards_mean = all_reduce_mean(tensor=chosen_rewards)
|
||||
rejected_rewards_mean = all_reduce_mean(tensor=rejected_rewards)
|
||||
@@ -347,16 +342,301 @@ class DPOTrainer(SLTrainer):
|
||||
self.accumulative_meter.add("rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item())
|
||||
self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item())
|
||||
self.accumulative_meter.add("accuracy", reward_accuracies_mean.to(torch.float16).item())
|
||||
self.accumulative_meter.add(
|
||||
"margin", (chosen_rewards_mean - rejected_rewards_mean).to(torch.float16).mean().item()
|
||||
)
|
||||
step_bar.update()
|
||||
|
||||
msg = "Evaluation Result:\n"
|
||||
for tag in ["loss", "chosen_rewards", "rejected_rewards", "accuracy", "margin"]:
|
||||
msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n"
|
||||
self.coordinator.print_on_master(msg)
|
||||
os.makedirs(self.save_dir, exist_ok=True)
|
||||
with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f:
|
||||
f.write(msg)
|
||||
if (i + 1) % self.accumulation_steps == 0:
|
||||
self.optimizer.step()
|
||||
self.optimizer.zero_grad()
|
||||
self.actor_scheduler.step()
|
||||
|
||||
step_bar.set_postfix(
|
||||
{
|
||||
"train/loss": self.accumulative_meter.get("loss"),
|
||||
"train/chosen_rewards": self.accumulative_meter.get("chosen_rewards"),
|
||||
"train/rejected_rewards": self.accumulative_meter.get("rejected_rewards"),
|
||||
"train/accuracy": self.accumulative_meter.get("accuracy"),
|
||||
}
|
||||
)
|
||||
step_bar.update()
|
||||
if self.writer and is_rank_0():
|
||||
self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), self.num_train_step)
|
||||
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step)
|
||||
self.writer.add_scalar(
|
||||
"train/chosen_rewards", self.accumulative_meter.get("chosen_rewards"), self.num_train_step
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/rejected_rewards",
|
||||
self.accumulative_meter.get("rejected_rewards"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/margin",
|
||||
self.accumulative_meter.get("chosen_rewards")
|
||||
- self.accumulative_meter.get("rejected_rewards"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.writer.add_scalar(
|
||||
"train/accuracy",
|
||||
self.accumulative_meter.get("accuracy"),
|
||||
self.num_train_step,
|
||||
)
|
||||
self.num_train_step += 1
|
||||
self.accumulative_meter.reset()
|
||||
|
||||
if self.save_dir is not None and self.num_train_step > 0 and self.num_train_step % self.save_interval == 0:
|
||||
# save checkpoint
|
||||
self.coordinator.print_on_master("\nStart saving model checkpoint with running states")
|
||||
save_checkpoint(
|
||||
save_dir=self.save_dir,
|
||||
booster=self.booster,
|
||||
model=self.model,
|
||||
optimizer=self.optimizer,
|
||||
lr_scheduler=self.actor_scheduler,
|
||||
epoch=epoch,
|
||||
step=self.num_train_step,
|
||||
batch_size=batch_size,
|
||||
coordinator=self.coordinator,
|
||||
)
|
||||
self.coordinator.print_on_master(
|
||||
f"Saved checkpoint at epoch {epoch} step {self.save_interval} at folder {self.save_dir}"
|
||||
)
|
||||
|
||||
step_bar.close()
|
||||
|
||||
def _eval(self, epoch: int):
|
||||
"""
|
||||
Args:
|
||||
epoch int: the number of current epoch
|
||||
"""
|
||||
if self.eval_dataloader is None:
|
||||
self.coordinator.print_on_master("No eval dataloader is provided, skip evaluation")
|
||||
return
|
||||
self.model.eval()
|
||||
self.ref_model.eval()
|
||||
self.accumulative_meter.reset()
|
||||
self.coordinator.print_on_master("\nStart evaluation...")
|
||||
|
||||
if isinstance(self.plugin, HybridParallelPlugin) and self.plugin.pp_size > 1:
|
||||
step_bar = tqdm(
|
||||
range(len(self.eval_dataloader)),
|
||||
desc="Step",
|
||||
disable=not (dist.get_rank() == dist.get_world_size() - 1),
|
||||
)
|
||||
with torch.no_grad():
|
||||
for _, batch in enumerate(self.eval_dataloader):
|
||||
batch = to_device(batch, self.device)
|
||||
(
|
||||
chosen_input_ids,
|
||||
chosen_attention_mask,
|
||||
chosen_loss_mask,
|
||||
reject_input_ids,
|
||||
reject_attention_mask,
|
||||
reject_loss_mask,
|
||||
) = (
|
||||
batch["chosen_input_ids"],
|
||||
batch["chosen_attention_mask"],
|
||||
batch["chosen_loss_mask"],
|
||||
batch["reject_input_ids"],
|
||||
batch["reject_attention_mask"],
|
||||
batch["reject_loss_mask"],
|
||||
)
|
||||
batch_size = chosen_input_ids.size()[0]
|
||||
# Calculate logits from reference model.
|
||||
if self.ref_model is not None:
|
||||
self.ref_model.eval()
|
||||
with torch.no_grad():
|
||||
ref_all_logits = self.ref_model(
|
||||
input_ids=torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
attention_mask=torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)["logits"]
|
||||
ref_chosen_logits = ref_all_logits[:batch_size]
|
||||
ref_reject_logits = ref_all_logits[batch_size:]
|
||||
logprob_ref_chosen = calc_masked_log_probs(
|
||||
ref_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
logprob_ref_reject = calc_masked_log_probs(
|
||||
ref_reject_logits, reject_input_ids, reject_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
else:
|
||||
logprob_ref_chosen = None
|
||||
logprob_ref_reject = None
|
||||
|
||||
# Merge chosen and reject
|
||||
inputs_ids = torch.stack([item for tup in zip(chosen_input_ids, reject_input_ids) for item in tup])
|
||||
attention_mask = torch.stack(
|
||||
[item for tup in zip(chosen_attention_mask, reject_attention_mask) for item in tup]
|
||||
)
|
||||
loss_mask = torch.stack([item for tup in zip(chosen_loss_mask, reject_loss_mask) for item in tup])
|
||||
logprob_ref = torch.stack(
|
||||
[item for tup in zip(logprob_ref_chosen, logprob_ref_reject) for item in tup]
|
||||
)
|
||||
|
||||
data_iter = iter(
|
||||
[
|
||||
{
|
||||
"input_ids": inputs_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"loss_mask": loss_mask,
|
||||
"logprob_ref": logprob_ref,
|
||||
}
|
||||
]
|
||||
)
|
||||
rewards = []
|
||||
|
||||
def _criterion(outputs, inputs):
|
||||
loss, chosen_rewards, rejected_rewards = self.actor_loss_fn(
|
||||
calc_masked_log_probs(
|
||||
outputs["logits"][0::2],
|
||||
inputs["input_ids"][0::2],
|
||||
inputs["loss_mask"][0::2][:, 1:],
|
||||
self.length_normalization,
|
||||
),
|
||||
calc_masked_log_probs(
|
||||
outputs["logits"][1::2],
|
||||
inputs["input_ids"][1::2],
|
||||
inputs["loss_mask"][1::2][:, 1:],
|
||||
self.length_normalization,
|
||||
),
|
||||
inputs["logprob_ref"][0::2] if inputs["logprob_ref"] is not None else None,
|
||||
inputs["logprob_ref"][1::2] if inputs["logprob_ref"] is not None else None,
|
||||
inputs["loss_mask"][0::2][:, 1:],
|
||||
inputs["loss_mask"][1::2][:, 1:],
|
||||
)
|
||||
rewards.append(chosen_rewards)
|
||||
rewards.append(rejected_rewards)
|
||||
return loss
|
||||
|
||||
outputs = self.booster.execute_pipeline(
|
||||
data_iter,
|
||||
self.model,
|
||||
criterion=_criterion,
|
||||
optimizer=self.optimizer,
|
||||
return_loss=True,
|
||||
)
|
||||
loss = outputs["loss"]
|
||||
if self.booster.plugin.stage_manager.is_last_stage():
|
||||
chosen_rewards, rejected_rewards = rewards[0], rewards[1]
|
||||
global_loss = all_reduce_mean(loss, self.plugin)
|
||||
chosen_rewards_mean = all_reduce_mean(chosen_rewards, self.plugin)
|
||||
rejected_rewards_mean = all_reduce_mean(rejected_rewards, self.plugin)
|
||||
if dist.get_rank() == dist.get_world_size() - 1:
|
||||
step_bar.set_postfix(
|
||||
{
|
||||
"eval/loss": global_loss.item(),
|
||||
"eval/lr": self.actor_scheduler.get_last_lr()[0],
|
||||
"eval/chosen_rewards": chosen_rewards.to(torch.float16).mean().item(),
|
||||
"eval/rejected_rewards": rejected_rewards.to(torch.float16).mean().item(),
|
||||
}
|
||||
)
|
||||
self.accumulative_meter.add(
|
||||
"chosen_rewards", chosen_rewards_mean.to(torch.float16).mean().item()
|
||||
)
|
||||
self.accumulative_meter.add(
|
||||
"rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item()
|
||||
)
|
||||
self.accumulative_meter.add("loss", global_loss.to(torch.float16).item())
|
||||
step_bar.update()
|
||||
if self.booster.plugin.stage_manager.is_last_stage():
|
||||
msg = "\nEvaluation Result:\n"
|
||||
for tag in ["loss", "chosen_rewards", "rejected_rewards"]:
|
||||
msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n"
|
||||
if dist.get_rank() == dist.get_world_size() - 1:
|
||||
print(msg)
|
||||
else:
|
||||
step_bar = trange(
|
||||
len(self.eval_dataloader),
|
||||
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
|
||||
disable=not is_rank_0(),
|
||||
)
|
||||
with torch.no_grad():
|
||||
for i, batch in enumerate(self.eval_dataloader):
|
||||
batch = to_device(batch, self.device)
|
||||
(
|
||||
chosen_input_ids,
|
||||
chosen_attention_mask,
|
||||
chosen_loss_mask,
|
||||
reject_input_ids,
|
||||
reject_attention_mask,
|
||||
reject_loss_mask,
|
||||
) = (
|
||||
batch["chosen_input_ids"],
|
||||
batch["chosen_attention_mask"],
|
||||
batch["chosen_loss_mask"],
|
||||
batch["reject_input_ids"],
|
||||
batch["reject_attention_mask"],
|
||||
batch["reject_loss_mask"],
|
||||
)
|
||||
if not self.apply_loss_mask:
|
||||
chosen_loss_mask = chosen_loss_mask.fill_(1.0)
|
||||
reject_loss_mask = reject_loss_mask.fill_(1.0)
|
||||
|
||||
batch_size = chosen_input_ids.size()[0]
|
||||
|
||||
actor_all_logits = self.model(
|
||||
torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)["logits"]
|
||||
actor_chosen_logits = actor_all_logits[:batch_size]
|
||||
actor_reject_logits = actor_all_logits[batch_size:]
|
||||
|
||||
logprob_actor_chosen = calc_masked_log_probs(
|
||||
actor_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
|
||||
logprob_actor_reject = calc_masked_log_probs(
|
||||
actor_reject_logits, reject_input_ids, reject_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
ref_all_logits = self.ref_model(
|
||||
torch.cat([chosen_input_ids, reject_input_ids]),
|
||||
torch.cat([chosen_attention_mask, reject_attention_mask]),
|
||||
)["logits"]
|
||||
ref_chosen_logits = ref_all_logits[:batch_size]
|
||||
ref_reject_logits = ref_all_logits[batch_size:]
|
||||
logprob_ref_chosen = calc_masked_log_probs(
|
||||
ref_chosen_logits, chosen_input_ids, chosen_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
logprob_ref_reject = calc_masked_log_probs(
|
||||
ref_reject_logits, reject_input_ids, reject_loss_mask[:, 1:], self.length_normalization
|
||||
)
|
||||
|
||||
losses, chosen_rewards, rejected_rewards = self.actor_loss_fn(
|
||||
logprob_actor_chosen,
|
||||
logprob_actor_reject,
|
||||
logprob_ref_chosen if logprob_ref_chosen is not None else None,
|
||||
logprob_ref_reject if logprob_ref_reject is not None else None,
|
||||
chosen_loss_mask[:, 1:],
|
||||
reject_loss_mask[:, 1:],
|
||||
)
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float().mean()
|
||||
loss = losses.mean()
|
||||
loss_mean = all_reduce_mean(tensor=loss)
|
||||
chosen_rewards_mean = all_reduce_mean(tensor=chosen_rewards)
|
||||
rejected_rewards_mean = all_reduce_mean(tensor=rejected_rewards)
|
||||
reward_accuracies_mean = all_reduce_mean(tensor=reward_accuracies)
|
||||
self.accumulative_meter.add("chosen_rewards", chosen_rewards_mean.to(torch.float16).mean().item())
|
||||
self.accumulative_meter.add(
|
||||
"rejected_rewards", rejected_rewards_mean.to(torch.float16).mean().item()
|
||||
)
|
||||
self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item())
|
||||
self.accumulative_meter.add("accuracy", reward_accuracies_mean.to(torch.float16).item())
|
||||
self.accumulative_meter.add(
|
||||
"margin", (chosen_rewards_mean - rejected_rewards_mean).to(torch.float16).mean().item()
|
||||
)
|
||||
step_bar.set_postfix(
|
||||
{
|
||||
"eval/loss": self.accumulative_meter.get("loss"),
|
||||
"eval/chosen_rewards": self.accumulative_meter.get("chosen_rewards"),
|
||||
"eval/rejected_rewards": self.accumulative_meter.get("rejected_rewards"),
|
||||
"eval/accuracy": self.accumulative_meter.get("accuracy"),
|
||||
}
|
||||
)
|
||||
step_bar.update()
|
||||
|
||||
msg = "\nEvaluation Result:\n"
|
||||
for tag in ["loss", "chosen_rewards", "rejected_rewards", "accuracy", "margin"]:
|
||||
msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n"
|
||||
self.coordinator.print_on_master(msg)
|
||||
if self.save_dir is not None:
|
||||
os.makedirs(self.save_dir, exist_ok=True)
|
||||
with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f:
|
||||
f.write(msg)
|
||||
step_bar.close()
|
||||
|
Reference in New Issue
Block a user