[refactor] moving memtracer to gemini (#801)

This commit is contained in:
Jiarui Fang
2022-04-19 10:13:08 +08:00
committed by GitHub
parent 8711c706f4
commit 4d9332b4c5
24 changed files with 102 additions and 87 deletions

View File

@@ -0,0 +1,9 @@
import torch
def _format_number(val, prec=5):
if isinstance(val, float):
return f'{val:.{prec}g}'
elif torch.is_tensor(val) and torch.is_floating_point(val):
return f'{val.item():.{prec}g}'
return val

View File

@@ -14,14 +14,7 @@ from colossalai.logging import DistributedLogger
from colossalai.utils import report_memory_usage, is_dp_rank_0, \
is_tp_rank_0, is_no_pp_or_last_stage, MultiTimer
from ._base_hook import BaseHook
def _format_number(val, prec=5):
if isinstance(val, float):
return f'{val:.{prec}g}'
elif torch.is_tensor(val) and torch.is_floating_point(val):
return f'{val.item():.{prec}g}'
return val
from ._commons_ import _format_number
class LogByEpochHook(BaseHook):
@@ -35,10 +28,7 @@ class LogByEpochHook(BaseHook):
depend on the hooks order in the hook list.
"""
def __init__(self,
logger,
interval: int = 1,
priority: int = 1):
def __init__(self, logger, interval: int = 1, priority: int = 1):
super().__init__(priority)
self.logger = logger
self._interval = interval
@@ -63,14 +53,12 @@ class LogMetricByStepHook(BaseHook):
def after_train_iter(self, trainer, *args):
trainer.states['step_metrics'] = dict()
for metric_name, metric_calculator in trainer.states['metrics']['train'].items():
trainer.states['step_metrics'][metric_name.lower()] = \
f'{_format_number(metric_calculator.get_last_step_value())}'
trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_value()
def after_test_iter(self, trainer, *args):
trainer.states['step_metrics'] = dict()
for metric_name, metric_calculator in trainer.states['metrics']['test'].items():
trainer.states['step_metrics'][metric_name.lower()] = \
f'{_format_number(metric_calculator.get_last_step_value())}'
trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_value()
@HOOKS.register_module
@@ -85,18 +73,14 @@ class LogMetricByEpochHook(LogByEpochHook):
depend on the hooks order in the hook list.
"""
def __init__(self,
logger,
interval: int = 1,
priority: int = 10) -> None:
def __init__(self, logger, interval: int = 1, priority: int = 10) -> None:
super().__init__(logger, interval, priority)
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage()
def _get_str(self, trainer, mode):
msg = []
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
msg.append(
f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}')
msg.append(f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}')
msg = ' | '.join(msg)
return msg
@@ -130,12 +114,13 @@ class TensorboardHook(BaseHook):
depend on the hooks order in the hook list.
"""
def __init__(self,
log_dir: str,
ranks: List = None,
parallel_mode: ParallelMode = ParallelMode.GLOBAL,
priority: int = 10,
) -> None:
def __init__(
self,
log_dir: str,
ranks: List = None,
parallel_mode: ParallelMode = ParallelMode.GLOBAL,
priority: int = 10,
) -> None:
super().__init__(priority=priority)
from torch.utils.tensorboard import SummaryWriter
@@ -280,13 +265,14 @@ class LogMemoryByEpochHook(LogByEpochHook):
log_eval (bool, optional): Whether writes in evaluation, defaults to True.
"""
def __init__(self,
logger: DistributedLogger,
interval: int = 1,
priority: int = 10,
log_eval: bool = True,
report_cpu: bool = False, # no reference
) -> None:
def __init__(
self,
logger: DistributedLogger,
interval: int = 1,
priority: int = 10,
log_eval: bool = True,
report_cpu: bool = False, # no reference
) -> None:
super().__init__(logger=logger, interval=interval, priority=priority)
self._log_eval = log_eval
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0()

View File

@@ -1,7 +1,7 @@
from colossalai.registry import HOOKS
from torch import Tensor
from colossalai.trainer.hooks import BaseHook
from colossalai.utils.memory_tracer import AsyncMemoryMonitor
from colossalai.gemini.memory_tracer import AsyncMemoryMonitor
@HOOKS.register_module

View File

@@ -13,6 +13,7 @@ from colossalai.registry import HOOKS
from colossalai.utils import get_current_device, is_no_pp_or_last_stage
from ._base_hook import BaseHook
from ._commons_ import _format_number
class Metric(ABC):
@@ -51,7 +52,7 @@ class Metric(ABC):
pass
@abstractmethod
def get_last_step_value(self):
def get_last_step_value(self) -> str:
"""Returns the metric value in the last iteration.
"""
pass
@@ -120,10 +121,10 @@ class LossMetric(Metric):
self.accum_loss.div_(self.count)
return self.accum_loss.item()
def get_last_step_value(self):
def get_last_step_value(self) -> str:
"""Returns :attr:`last_step_loss`.
"""
return self.last_step_loss
return str(self.last_step_loss)
@staticmethod
def is_better(a, b):
@@ -148,8 +149,8 @@ class LearningRateMetric(Metric):
def update(self, lr) -> None:
self.lr = lr
def get_last_step_value(self):
return self.lr
def get_last_step_value(self) -> str:
return str(self.lr)
def get_accumulated_value(self):
return self.lr
@@ -203,10 +204,10 @@ class AccuracyMetric(Metric):
self.accumulated_sum += self.last_step_sum
self.accumulated_correct += self.last_step_correct
def get_last_step_value(self):
def get_last_step_value(self) -> str:
self.last_step_sum = all_reduce(self.last_step_sum, ParallelMode.DATA)
self.last_step_correct = all_reduce(self.last_step_correct, ParallelMode.DATA)
return (self.last_step_correct / self.last_step_sum).item()
return str(_format_number((self.last_step_correct / self.last_step_sum).item()))
def get_accumulated_value(self):
self.accumulated_sum = all_reduce(self.accumulated_sum, ParallelMode.DATA)
@@ -322,7 +323,8 @@ class ThroughputMetric(Metric):
Args:
epoch_only (bool): Whether the metric only read for the full epoch.
"""
def __init__(self, epoch_only: bool, ignored_steps: int = 0):
def __init__(self, epoch_only: bool, ignored_steps: int = 0, tflop_per_step: int = 0):
super().__init__(epoch_only=epoch_only)
self.ignored_steps = ignored_steps
self.cur_steps = 0
@@ -330,6 +332,7 @@ class ThroughputMetric(Metric):
self.accumulated_used_time = torch.zeros(1, device=get_current_device())
self.last_step_num_samples = torch.zeros(1, device=get_current_device())
self.last_step_used_time = torch.zeros(1, device=get_current_device())
self._tflop_per_step = tflop_per_step
def reset(self) -> None:
# self.cur_steps = 0
@@ -346,13 +349,18 @@ class ThroughputMetric(Metric):
self.accumulated_num_samples += self.last_step_num_samples
self.accumulated_used_time += self.last_step_used_time
def get_last_step_value(self):
def get_last_step_value(self) -> str:
self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / \
gpc.get_world_size(ParallelMode.DATA)
self.last_step_num_samples = all_reduce(self.last_step_num_samples, ParallelMode.DATA)
return (self.last_step_num_samples / (self.last_step_used_time + 1e-12)).item()
sample_per_sec = _format_number(self.last_step_num_samples / (self.last_step_used_time + 1e-12).item())
if self._tflop_per_step > 0:
tflops = _format_number(self._tflop_per_step / (self.last_step_used_time.item() + 1e-12))
return f"{sample_per_sec} sample_per_sec, {tflops} Tflops"
else:
return f"{sample_per_sec} sample_per_sec"
def get_accumulated_value(self):
def get_accumulated_value(self) -> float:
self.accumulated_used_time = all_reduce(self.accumulated_used_time, ParallelMode.DATA) / \
gpc.get_world_size(ParallelMode.DATA)
self.accumulated_num_samples = all_reduce(self.accumulated_num_samples, ParallelMode.DATA)
@@ -373,14 +381,18 @@ class ThroughputHook(MetricHook):
defaults to 10. If different hooks share same priority, the order of printing would
depend on the hooks order in the hook list.
"""
def __init__(self, ignored_steps: int = 0, priority: int = 10):
def __init__(self, ignored_steps: int = 0, priority: int = 10, tflop_per_step: int = 0):
super().__init__(priority)
self.ignored_steps = ignored_steps
self._tflop_per_step = tflop_per_step
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.metric = ThroughputMetric(epoch_only=True, ignored_steps=self.ignored_steps)
self.metric = ThroughputMetric(epoch_only=True,
ignored_steps=self.ignored_steps,
tflop_per_step=self._tflop_per_step)
# register the metric
trainer.states['metrics']['train']['Throughput'] = self.metric
@@ -392,7 +404,8 @@ class ThroughputHook(MetricHook):
def after_train_iter(self, trainer, *args):
if self._is_stage_to_compute:
self.metric.update(trainer.engine.schedule.batch_size, trainer._timer.get_timer('Train-step').get_elapsed_time())
self.metric.update(trainer.engine.schedule.batch_size,
trainer._timer.get_timer('Train-step').get_elapsed_time())
def before_test(self, trainer):
if self._is_stage_to_compute:
@@ -400,4 +413,5 @@ class ThroughputHook(MetricHook):
def after_test_iter(self, trainer, *args):
if self._is_stage_to_compute:
self.metric.update(trainer.engine.schedule.batch_size, trainer._timer.get_timer('Test-step').get_elapsed_time())
self.metric.update(trainer.engine.schedule.batch_size,
trainer._timer.get_timer('Test-step').get_elapsed_time())