[inference]Optimize the usage of the mid tensors space in flash attn (#5304)

* opt flash attn

* opt tmp tensor

* fix benchmark_llama

* fix code style

* fix None logic for output tensor

* fix adapted to get_xine_cache

* add comment

* fix ci bugs

* fix some codes

* rm duplicated codes

* rm duplicated codes

* fix code style

* add _get_dtype in config.py
This commit is contained in:
yuehuayingxueluo
2024-01-26 14:00:10 +08:00
committed by GitHub
parent af8359c430
commit 4f28cb43c0
16 changed files with 199 additions and 57 deletions

View File

@@ -5,6 +5,7 @@ from typing import Any, List, Tuple, Union
import torch
from ordered_set import OrderedSet
from colossalai.inference.flash_decoding_utils import FDIntermTensors
from colossalai.logging import get_dist_logger
logger = get_dist_logger(__name__)
@@ -61,6 +62,7 @@ class Sequence:
sample_params (SampleParams): The sample_params of input sequence.
block_table (torch.Tensor): The index of input sequence in block_table.
eos_token_id (int): The eos token id for this inference process.
pad_token_id (int): The pad token id for this inference process.
max_output_len (int): Maximum output length.
"""
@@ -71,6 +73,7 @@ class Sequence:
sample_params: Any # SampleParams needs to be imported later.
block_table: torch.Tensor
eos_token_id: int
pad_token_id: int
max_output_len: int = 256
def __post_init__(self):
@@ -167,15 +170,23 @@ class BatchInfo:
Information to be passed and used for a batch of sequences.
"""
max_batch_size: int
kv_max_split_num: int
num_heads: int
head_dim: int
sequences_set: OrderedSet[Sequence] = None
is_prompts: bool = True
device: torch.device = None
dtype: torch.dtype = None
fd_inter_tensor: FDIntermTensors = None
def __post_init__(self):
if self.device is None:
self.device = torch.cuda.current_device()
if self.sequences_set is None:
self.sequences_set = OrderedSet()
if self.fd_inter_tensor is None:
self.fd_inter_tensor = FDIntermTensors()
def init_batch(self, seqs: List["Sequence"] = None):
"""
@@ -185,8 +196,6 @@ class BatchInfo:
seqs (List["Sequence"]): List of input sequence.
"""
assert len(self.sequences_set) == 0, "Sequences set has been initialized."
if seqs is not None:
if not isinstance(seqs, list):
seqs = [seqs]
@@ -197,16 +206,30 @@ class BatchInfo:
self.sequences_set.add(seq)
def init_fd_tensors(self):
if not self.fd_inter_tensor.is_initialized:
self.fd_inter_tensor.initialize(
max_batch_size=self.max_batch_size,
num_attn_heads=self.num_heads,
kv_max_split_num=self.kv_max_split_num,
head_dim=self.head_dim,
dtype=self.dtype,
device=self.device,
)
def get_block_table_tensor(self) -> None:
tesnor_list = []
block_table = None
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
for seq in self.sequences_set:
block_table = seq.block_table
assert (
block_table is not None
), f"The sequence(request_id {seq.request_id}) has not initialized the block_table."
tesnor_list.append(seq.block_table)
assert tesnor_list, "Batch has not been initialized yet. Please initialize batch first."
block_table = torch.stack(tesnor_list)
return block_table
@@ -218,7 +241,6 @@ class BatchInfo:
"""
if self.is_prompts:
self.sequences_set.clear()
else:
for seq in self.sequences_set:
seq.mark_aborted()
@@ -312,14 +334,14 @@ class BatchInfo:
"""
Get bacth inputs for forward inference computation.
"""
input_list = []
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
for seq in self.sequences_set:
if self.is_prompts:
if seq.output_len > 0:
print(seq.output_token_id)
seq_data = seq.input_token_id + seq.output_token_id
print(seq_data)
input_list.append(seq.input_token_id + seq.output_token_id)
else:
input_list.append(seq.input_token_id)
@@ -328,7 +350,8 @@ class BatchInfo:
max_seq_len = max(len(sub_list) for sub_list in input_list)
return _make_tensor_with_pad(input_list, max_seq_len, 0, dtype=torch.int)
# We assume that all the padding_id in seq are the same at present.
return _make_tensor_with_pad(input_list, max_seq_len, self.sequences_set[0].pad_token_id, dtype=torch.int)
def get_1D_inputs(self) -> Tuple[torch.LongTensor, torch.Tensor]:
"""
@@ -336,6 +359,9 @@ class BatchInfo:
"""
input_list = []
input_len_list = []
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
for seq in self.sequences_set:
if self.is_prompts:
input_list.extend(seq.input_token_id)
@@ -353,16 +379,23 @@ class BatchInfo:
Get the input_len of each sentence in this batch.
"""
len_list = []
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
for seq in self.sequences_set:
len_list.append(seq.sentence_len)
return torch.tensor(len_list, dtype=torch.int, device=self.device)
def get_attn_mask(self, padding_id: int) -> torch.Tensor:
def get_attn_mask(self) -> torch.Tensor:
"""
Generate and return attention mask.
"""
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
past_values = []
# We assume that all the padding_id in seq are the same at present.
padding_id = self.sequences_set[0].pad_token_id
for seq in self.sequences_set:
past_values.append(seq.input_token_id + seq.output_token_id)
@@ -378,7 +411,7 @@ class BatchInfo:
def _pad_to_max(x: List[int], max_len: int, pad: int) -> List[int]:
assert len(x) <= max_len
return x + [pad] * (max_len - len(x))
return [pad] * (max_len - len(x)) + x
def _make_tensor_with_pad(