mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-15 14:12:02 +00:00
[fx] provide a stable but not accurate enough version of profiler. (#1547)
* [fx] compute memory stat and flop count for MetaInfoProp. * [fx] modify node attribute. * [fx] modify ckpt_chen. * [fx] fix compatibility. * [fx] fix import error. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip if torch 1.11.0. * [fx] recover MetaInfoProp support for PyTorch 1.11. * [fx] provide a stable but not accurate enough version of profiler. * [fx] provide a stable but not accurate enough version of profiler. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix import error.
This commit is contained in:
@@ -0,0 +1,60 @@
|
||||
from functools import reduce
|
||||
import operator
|
||||
from typing import Any, Optional, Tuple
|
||||
import torch
|
||||
from ..registry import meta_profiler_function
|
||||
|
||||
|
||||
@meta_profiler_function.register(torch.arange)
|
||||
@meta_profiler_function.register(torch.finfo)
|
||||
@meta_profiler_function.register(torch.permute)
|
||||
@meta_profiler_function.register(torch.Tensor.permute)
|
||||
@meta_profiler_function.register(torch.Tensor.repeat)
|
||||
@meta_profiler_function.register(torch.index_select)
|
||||
@meta_profiler_function.register(torch.Tensor.index_select)
|
||||
@meta_profiler_function.register(torch.squeeze)
|
||||
@meta_profiler_function.register(torch.Tensor.squeeze)
|
||||
@meta_profiler_function.register(torch.unsqueeze)
|
||||
@meta_profiler_function.register(torch.Tensor.unsqueeze)
|
||||
@meta_profiler_function.register(torch.cat)
|
||||
@meta_profiler_function.register(torch.concat)
|
||||
@meta_profiler_function.register(torch.repeat_interleave)
|
||||
@meta_profiler_function.register(torch.Tensor.repeat_interleave)
|
||||
@meta_profiler_function.register(torch.flatten)
|
||||
@meta_profiler_function.register(torch.Tensor.flatten)
|
||||
@meta_profiler_function.register(torch.roll)
|
||||
@meta_profiler_function.register(torch.full)
|
||||
@meta_profiler_function.register(torch.Tensor.cpu)
|
||||
@meta_profiler_function.register(torch.Tensor.cuda)
|
||||
@meta_profiler_function.register(torch._assert)
|
||||
def torch_zero_flops_op(*args, **kwargs) -> Tuple[int, int]:
|
||||
flops = 0
|
||||
macs = 0
|
||||
return flops, macs
|
||||
|
||||
|
||||
@meta_profiler_function.register(torch.where)
|
||||
def torch_where(condition: torch.Tensor, x: Any, y: Any) -> Tuple[int, int]:
|
||||
# torch.where returns the broadcasted tensor of condition, x, and y,
|
||||
# so hack it by using addition
|
||||
flops = condition.numel()
|
||||
macs = 0
|
||||
return flops, macs
|
||||
|
||||
|
||||
@meta_profiler_function.register(torch.max)
|
||||
def torch_max(input: torch.Tensor,
|
||||
dim: int = None,
|
||||
keepdim: bool = False,
|
||||
*,
|
||||
out: Optional[torch.Tensor] = None) -> Tuple[int, int]:
|
||||
macs = 0
|
||||
assert out is None, 'assigning value to out is not supported yet'
|
||||
if dim is not None:
|
||||
shape = list(input.shape)
|
||||
shape.pop(int(dim))
|
||||
flops = reduce(operator.mul, shape), macs
|
||||
return flops, macs
|
||||
else:
|
||||
flops = input.numel()
|
||||
return flops, macs
|
Reference in New Issue
Block a user