mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 12:30:42 +00:00
[fx] provide a stable but not accurate enough version of profiler. (#1547)
* [fx] compute memory stat and flop count for MetaInfoProp. * [fx] modify node attribute. * [fx] modify ckpt_chen. * [fx] fix compatibility. * [fx] fix import error. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip if torch 1.11.0. * [fx] recover MetaInfoProp support for PyTorch 1.11. * [fx] provide a stable but not accurate enough version of profiler. * [fx] provide a stable but not accurate enough version of profiler. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix import error.
This commit is contained in:
@@ -0,0 +1,33 @@
|
||||
from typing import Tuple, Union
|
||||
import torch
|
||||
from ..registry import meta_profiler_module
|
||||
|
||||
|
||||
@meta_profiler_module.register(torch.nn.InstanceNorm1d)
|
||||
@meta_profiler_module.register(torch.nn.InstanceNorm2d)
|
||||
@meta_profiler_module.register(torch.nn.InstanceNorm3d)
|
||||
@meta_profiler_module.register(torch.nn.LayerNorm)
|
||||
@meta_profiler_module.register(torch.nn.GroupNorm)
|
||||
@meta_profiler_module.register(torch.nn.BatchNorm1d)
|
||||
@meta_profiler_module.register(torch.nn.BatchNorm2d)
|
||||
@meta_profiler_module.register(torch.nn.BatchNorm3d)
|
||||
def torch_nn_normalize(self: Union[torch.nn.LayerNorm, torch.nn.GroupNorm, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d,
|
||||
torch.nn.BatchNorm3d], input: torch.Tensor) -> Tuple[int, int]:
|
||||
# adopted from https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/profiling/flops_profiler/profiler.py#L615
|
||||
has_affine = self.weight is not None
|
||||
if self.training:
|
||||
flops = input.numel() * (2 if has_affine else 1)
|
||||
else:
|
||||
flops = input.numel() * (5 if has_affine else 4)
|
||||
macs = 0
|
||||
return flops, macs
|
||||
|
||||
|
||||
try:
|
||||
import apex
|
||||
meta_profiler_module.register(apex.normalization.FusedLayerNorm)(torch_nn_normalize)
|
||||
meta_profiler_module.register(apex.normalization.FusedRMSNorm)(torch_nn_normalize)
|
||||
meta_profiler_module.register(apex.normalization.MixedFusedLayerNorm)(torch_nn_normalize)
|
||||
meta_profiler_module.register(apex.normalization.MixedFusedRMSNorm)(torch_nn_normalize)
|
||||
except (ImportError, AttributeError):
|
||||
pass
|
Reference in New Issue
Block a user