mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 13:00:52 +00:00
[tutorial] update fastfold tutorial (#2565)
* update readme * update * update
This commit is contained in:
@@ -2,23 +2,21 @@
|
||||
|
||||
## Table of contents
|
||||
|
||||
- [Overview](#📚-overview)
|
||||
- [Quick Start](#🚀-quick-start)
|
||||
- [Dive into FastFold](#🔍-dive-into-fastfold)
|
||||
- [FastFold Inference](#fastfold-inference)
|
||||
- [Table of contents](#table-of-contents)
|
||||
- [📚 Overview](#-overview)
|
||||
- [🚀 Quick Start](#-quick-start)
|
||||
- [🔍 Dive into FastFold](#-dive-into-fastfold)
|
||||
|
||||
## 📚 Overview
|
||||
|
||||
This example lets you to quickly try out the inference of FastFold.
|
||||
|
||||
**NOTE: We use random data and random parameters in this example.**
|
||||
|
||||
This example lets you to try out the inference of FastFold.
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
||||
1. Install FastFold
|
||||
|
||||
We highly recommend installing an Anaconda or Miniconda environment and install PyTorch with conda.
|
||||
|
||||
We highly recommend you to install FastFold with conda.
|
||||
```
|
||||
git clone https://github.com/hpcaitech/FastFold
|
||||
cd FastFold
|
||||
@@ -27,15 +25,19 @@ conda activate fastfold
|
||||
python setup.py install
|
||||
```
|
||||
|
||||
2. Run the inference scripts.
|
||||
2. Download datasets.
|
||||
|
||||
```bash
|
||||
python inference.py --gpus=1 --n_res=256 --chunk_size=None --inplace
|
||||
It may take ~900GB space to keep datasets.
|
||||
```
|
||||
+ `gpus` means the DAP size
|
||||
+ `n_res` means the length of residue sequence
|
||||
+ `chunk_size` introduces a memory-saving technology at the cost of speed, None means not using, 16 may be a good trade off for long sequences.
|
||||
+ `inplace` introduces another memory-saving technology with zero cost, drop `--inplace` if you do not want it.
|
||||
./scripts/download_all_data.sh data/
|
||||
```
|
||||
|
||||
3. Run the inference scripts.
|
||||
|
||||
```
|
||||
bash inference.sh
|
||||
```
|
||||
You can find predictions under the `outputs` dir.
|
||||
|
||||
## 🔍 Dive into FastFold
|
||||
|
||||
|
Reference in New Issue
Block a user