mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-12 12:47:21 +00:00
[pipeline]: fix p2p comm, add metadata cache and support llama interleaved pp (#5134)
* test: add more p2p tests * fix: remove send_forward_recv_forward as p2p op list need to use the same group * fix: make send and receive atomic * feat: update P2PComm fn * feat: add metadata cache in 1f1b * feat: add metadata cache in interleaved pp * feat: modify is_xx_stage fn * revert: add _broadcast_object_list * feat: add interleaved pp in llama policy * feat: set NCCL_BUFFSIZE in HybridParallelPlugin
This commit is contained in:
@@ -4,6 +4,7 @@ from types import MethodType
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
||||
import colossalai
|
||||
@@ -14,21 +15,26 @@ from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
|
||||
DIM = 8
|
||||
NUM_LAYER = 8
|
||||
|
||||
|
||||
class MlpModel(nn.Module):
|
||||
def __init__(self):
|
||||
super(MlpModel, self).__init__()
|
||||
self.linear1 = nn.Linear(4, 8)
|
||||
self.linear2 = nn.Linear(8, 4)
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([nn.Linear(DIM, DIM) for _ in range(NUM_LAYER)])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear1(x)
|
||||
x = self.linear2(x)
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
def pp_linear_fwd(
|
||||
forward, data: torch.Tensor = None, input_obj: torch.Tensor = None, stage_mgr: PipelineStageManager = None
|
||||
forward,
|
||||
data: torch.Tensor = None,
|
||||
input_obj: torch.Tensor = None,
|
||||
stage_mgr: PipelineStageManager = None,
|
||||
):
|
||||
if stage_mgr.is_first_stage():
|
||||
return {"input_obj": forward(data)}
|
||||
@@ -38,34 +44,45 @@ def pp_linear_fwd(
|
||||
return {"input_obj": forward(input_obj)}
|
||||
|
||||
|
||||
def examine_pp():
|
||||
def examine_pp(num_microbatch: int, batch_size: int):
|
||||
"""
|
||||
This test is to examine the correctness of 1F1B, compared with torch.
|
||||
Be aware it contains some hardcodes.
|
||||
"""
|
||||
world_size = torch.distributed.get_world_size()
|
||||
local_rank = torch.distributed.get_rank()
|
||||
world_size = dist.get_world_size()
|
||||
dist.get_rank()
|
||||
seed_all(1453)
|
||||
|
||||
NUM_MICRO_BATCHS = 4
|
||||
BATCH_SIZE = 4
|
||||
|
||||
# create models
|
||||
torch_model = MlpModel().cuda()
|
||||
|
||||
pp_model = copy.deepcopy(torch_model).cuda()
|
||||
|
||||
DP_DIM, PP_DIM, TP_DIM = 0, 1, 2
|
||||
pg_mesh = ProcessGroupMesh(1, world_size, 1)
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
schedule = OneForwardOneBackwardSchedule(stage_manager, num_microbatches=NUM_MICRO_BATCHS)
|
||||
pg_mesh = ProcessGroupMesh(world_size)
|
||||
stage_manager = PipelineStageManager(pg_mesh, pipeline_axis=0)
|
||||
schedule = OneForwardOneBackwardSchedule(stage_manager, num_microbatches=num_microbatch)
|
||||
|
||||
for idx, (_, sub_model) in enumerate(pp_model.named_children()):
|
||||
if idx % (world_size) == local_rank:
|
||||
sharded_model = sub_model.cuda()
|
||||
rank = dist.get_rank()
|
||||
sharded_model = torch.nn.ModuleList()
|
||||
num_local_layer = NUM_LAYER // world_size
|
||||
for idx, sub_model in enumerate(pp_model.layers):
|
||||
if idx // num_local_layer == rank:
|
||||
sharded_model.append(sub_model.cuda())
|
||||
assert len(sharded_model) == num_local_layer
|
||||
|
||||
sharded_model._forward = sharded_model.forward
|
||||
sharded_model.forward = MethodType(partial(pp_linear_fwd, stage_mgr=stage_manager), sharded_model._forward)
|
||||
def custom_fwd(self, x):
|
||||
for layer in self._modules.values():
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
sharded_model._forward = MethodType(custom_fwd, sharded_model)
|
||||
sharded_model.forward = MethodType(
|
||||
partial(
|
||||
pp_linear_fwd,
|
||||
stage_mgr=stage_manager,
|
||||
),
|
||||
sharded_model._forward,
|
||||
)
|
||||
|
||||
# create optimizer
|
||||
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
||||
@@ -73,19 +90,15 @@ def examine_pp():
|
||||
|
||||
# create
|
||||
seed_all(1453)
|
||||
if stage_manager.is_first_stage():
|
||||
input_list = [torch.rand(BATCH_SIZE, 4).cuda()]
|
||||
else:
|
||||
input_list = [torch.zeros(BATCH_SIZE, 4).cuda()]
|
||||
torch.distributed.all_reduce(input_list[0])
|
||||
input_list = [torch.rand(batch_size, DIM).cuda()]
|
||||
dist.all_reduce(input_list[0])
|
||||
|
||||
criterion = lambda x, y: torch.mean(x)
|
||||
criterion = lambda x, *arg, **kwargs: (x * x).mean()
|
||||
|
||||
# forward and backward
|
||||
torch_output = torch_model(input_list[0])
|
||||
torch_loss = criterion(torch_output, _)
|
||||
torch_loss = criterion(torch_output)
|
||||
torch_loss.backward()
|
||||
|
||||
pp_ret = schedule.forward_backward_step(
|
||||
sharded_model, iter(input_list), criterion, pp_optimizer, return_loss=True, return_outputs=True
|
||||
)
|
||||
@@ -95,34 +108,66 @@ def examine_pp():
|
||||
assert torch.allclose(torch_loss, pp_ret["loss"])
|
||||
|
||||
# check gradients
|
||||
torch_grad = []
|
||||
for torch_p in torch_model.parameters():
|
||||
torch_grad.append(torch_p.grad.data)
|
||||
for idx, pp_p in enumerate(sharded_model.parameters()):
|
||||
assert torch.allclose(torch_grad[idx + local_rank * 2], pp_p.grad.data)
|
||||
for i in range(len(sharded_model)):
|
||||
idx = rank * num_local_layer + i
|
||||
assert torch.allclose(torch_model.layers[idx].weight.grad, sharded_model[i].weight.grad)
|
||||
assert torch.allclose(torch_model.layers[idx].bias.grad, sharded_model[i].bias.grad)
|
||||
|
||||
# step
|
||||
torch_optimizer.step()
|
||||
pp_optimizer.step()
|
||||
pp_optimizer.zero_grad()
|
||||
|
||||
# check updated param
|
||||
torch_param = []
|
||||
for torch_p in torch_model.parameters():
|
||||
torch_param.append(torch_p.data)
|
||||
for idx, pp_p in enumerate(sharded_model.parameters()):
|
||||
assert torch.allclose(torch_param[idx + local_rank * 2], pp_p.data)
|
||||
for i in range(len(sharded_model)):
|
||||
idx = rank * num_local_layer + i
|
||||
assert torch.allclose(torch_model.layers[idx].weight, sharded_model[i].weight)
|
||||
assert torch.allclose(torch_model.layers[idx].bias, sharded_model[i].bias)
|
||||
|
||||
# forward only
|
||||
with torch.no_grad():
|
||||
torch_output = torch_model(input_list[0])
|
||||
torch_loss = criterion(torch_output)
|
||||
|
||||
pp_ret = schedule.forward_backward_step(
|
||||
sharded_model, iter(input_list), criterion, pp_optimizer, return_loss=True, return_outputs=True
|
||||
)
|
||||
if stage_manager.is_last_stage():
|
||||
assert torch.allclose(torch_loss, pp_ret["loss"])
|
||||
|
||||
for layer in sharded_model:
|
||||
if layer.weight.grad is None:
|
||||
assert layer.weight.grad is None and layer.bias.grad is None
|
||||
else:
|
||||
assert torch.allclose(layer.weight.grad, torch.zeros_like(layer.weight.grad))
|
||||
assert torch.allclose(layer.bias.grad, torch.zeros_like(layer.bias.grad))
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
def run_dist(
|
||||
rank: int,
|
||||
world_size: int,
|
||||
port: int,
|
||||
num_microbatch: int,
|
||||
batch_size: int,
|
||||
):
|
||||
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost")
|
||||
examine_pp()
|
||||
examine_pp(num_microbatch, batch_size)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("num_microbatch", [4, 12])
|
||||
@pytest.mark.parametrize("batch_size", [12])
|
||||
@pytest.mark.parametrize("world_size", [2, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_pp():
|
||||
spawn(run_dist, 2)
|
||||
def test_pp(num_microbatch: int, batch_size: int, world_size: int):
|
||||
assert NUM_LAYER % world_size == 0
|
||||
spawn(
|
||||
run_dist,
|
||||
world_size,
|
||||
num_microbatch=num_microbatch,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_pp()
|
||||
test_pp(num_microbatch=4, batch_size=4, world_size=4)
|
||||
|
Reference in New Issue
Block a user