move logging to producer

This commit is contained in:
YeAnbang
2025-05-14 18:10:57 +08:00
parent 47a7dc7142
commit 50070c1e84
7 changed files with 92 additions and 70 deletions

View File

@@ -6,8 +6,11 @@ import ray
import ray.util.collective as cc
import torch
import tqdm
import wandb
from coati.dataset.loader import RawConversationDataset
from coati.distributed.reward.reward_fn import boxed_math_reward_fn, math_reward_fn
from ray.util.collective import allreduce
from ray.util.collective.types import Backend, ReduceOp
from torch.utils.data import DataLoader, DistributedSampler
from transformers import AutoTokenizer
@@ -15,7 +18,7 @@ from colossalai.utils import get_current_device
from .comm import ray_broadcast_tensor_dict
from .inference_backend import BACKEND_MAP
from .utils import pre_send, safe_write_jsonl
from .utils import pre_send, safe_append_to_jsonl_file
try:
from vllm import SamplingParams
@@ -43,6 +46,9 @@ class BaseProducer:
eval_interval=-1, # disable evaluation
evaluation_function_type="think_answer_tags",
eval_save_dir: str = "./eval",
project_name: str = None,
run_name: str = None,
wandb_group_name: str = None,
):
self.producer_idx = producer_idx
self.num_producers = num_producers
@@ -61,6 +67,14 @@ class BaseProducer:
self.eval_interval = eval_interval
self.eval_save_dir = eval_save_dir
self.consumer_global_step = 0
if self.producer_idx == 0:
self.wandb_run = wandb.init(
project=project_name,
sync_tensorboard=True,
dir="./wandb",
name=run_name + "_eval",
group=wandb_group_name,
)
if os.path.exists(self.eval_save_dir):
raise ValueError(f"Eval save dir {self.eval_save_dir} already exists. Please delete it or change the name.")
@@ -132,13 +146,18 @@ class BaseProducer:
self.consumer_pp_size = consumer_plugin_config.get("pp_size", 1) # consumer pp size
def setup(self) -> None:
cc.init_collective_group(
world_size=self.num_producers,
rank=self.producer_idx,
backend=Backend.NCCL,
group_name="producer_group",
)
cc.init_collective_group(1 + self.num_consumer_procs, 0, group_name=f"sync_data_{self.producer_idx}")
if self.consumer_pp_size > 1:
for i in range(self.consumer_pp_size):
cc.init_collective_group(self.num_producers + 1, self.producer_idx, group_name=f"sync_model_{i}")
else:
cc.init_collective_group(self.num_producers + 1, self.producer_idx, group_name="sync_model")
cc.init_collective_group(1 + self.num_consumer_procs, 0, group_name=f"sync_eval_statistics_{self.producer_idx}")
def rollout(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]:
raise NotImplementedError
@@ -160,13 +179,14 @@ class BaseProducer:
break
if self.eval_interval > 0 and self.eval_dataset_config is not None:
if i % self.eval_interval == 0:
eval_statistics = {}
to_log_msg = {}
for eval_task_name in self.eval_dataloaders:
print(
f"[P{self.producer_idx}] Evaluate episode {episode} step {i} on task {eval_task_name}"
)
if self.producer_idx == 0:
print(
f"[P{self.producer_idx}] Evaluate episode {episode} step {i} on task {eval_task_name}"
)
eval_results = []
eval_statistics[eval_task_name] = torch.zeros(2, device=self.device)
eval_statistics_tensor = torch.zeros((2,), dtype=torch.float32).to(self.device)
for eval_batch in tqdm.tqdm(
self.eval_dataloaders[eval_task_name], disable=self.producer_idx != 0
):
@@ -182,24 +202,27 @@ class BaseProducer:
for m in range(eval_outputs["input_ids"].size(0))
for n in range(eval_outputs["input_ids"].size(1))
]
eval_statistics[eval_task_name][0] += len(
[res for res in eval_results if res["ans_valid"] == 1]
eval_statistics_tensor[0] += len([res for res in eval_results if res["ans_valid"] == 1])
eval_statistics_tensor[1] += len(eval_results)
allreduce(eval_statistics_tensor, op=ReduceOp.SUM, group_name="producer_group")
to_log_msg[f"eval/{eval_task_name}"] = (
eval_statistics_tensor[0].item() / eval_statistics_tensor[1].item()
)
eval_statistics[eval_task_name][1] += len(eval_results)
if self.producer_idx == 0:
print(
f"[P{self.producer_idx}]: Accuracy on {eval_task_name}: {to_log_msg[f'eval/{eval_task_name}']}"
)
# save eval results
result_file_name = os.path.join(
self.eval_save_dir,
f"{eval_task_name}_episode_{episode}_step_{self.consumer_global_step}.jsonl",
safe_append_to_jsonl_file(
os.path.join(
self.eval_save_dir,
f"{eval_task_name}_episode_{episode}_step_{self.consumer_global_step}.jsonl",
),
eval_results,
)
# delete the file if it exists
safe_write_jsonl(result_file_name, eval_results)
print(f"[P{self.producer_idx}] Send eval statistics episode {episode} step {i}")
ray_broadcast_tensor_dict(
eval_statistics,
src=0,
device=self.device,
group_name=f"sync_eval_statistics_{self.producer_idx}",
)
if self.producer_idx == 0:
self.wandb_run.log(to_log_msg, step=self.consumer_global_step)
outputs = self.rollout(**batch)
print(f"[P{self.producer_idx}] Send data {[(k, v.shape) for k, v in outputs.items()]}")
@@ -248,12 +271,11 @@ class BaseProducer:
# linear annealing for 1 episode, temperature from initial to 0.9
if episode <= 0:
ratio = 1 - (len(self.train_dataloader) - i) / len(self.train_dataloader)
if isinstance(self.model.generate_config.temperature, dict):
self.model.generate_config["temperature"] = (1 - ratio) * self.generate_config[
"temperature"
] + ratio * 0.9
else:
self.model.generate_config.temperature = (1 - ratio) * self.generate_config[
self.model.generate_config["temperature"] = (1 - ratio) * self.generate_config[
"temperature"
] + ratio * 0.9
if isinstance(self.model, BACKEND_MAP["vllm"]):
self.model.sample_params.temperature = (1 - ratio) * self.generate_config[
"temperature"
] + ratio * 0.9
@@ -280,6 +302,10 @@ class SimpleProducer(BaseProducer):
eval_interval=-1, # disable evaluation
evaluation_function_type="think_answer_tags",
eval_save_dir: str = "./eval",
eval_generation_config={},
project_name: str = None,
run_name: str = None,
wandb_group_name: str = None,
):
super().__init__(
producer_idx,
@@ -299,10 +325,14 @@ class SimpleProducer(BaseProducer):
eval_interval=eval_interval,
evaluation_function_type=evaluation_function_type,
eval_save_dir=eval_save_dir,
project_name=project_name,
run_name=run_name,
wandb_group_name=wandb_group_name,
)
self.model = self.backend_cls(model_config, generate_config, self.tokenizer, num_generations)
self.eval_generation_config = copy.deepcopy(self.model.generate_config)
self.eval_generation_config["n"] = 1 # use 1 generation for evaluation
self.eval_generation_config.update(eval_generation_config)
self.eval_sample_params = SamplingParams(**self.eval_generation_config)
@torch.no_grad()