move logging to producer

This commit is contained in:
YeAnbang 2025-05-14 18:10:57 +08:00
parent 47a7dc7142
commit 50070c1e84
7 changed files with 92 additions and 70 deletions

View File

@ -36,7 +36,6 @@ class BaseConsumer:
minibatch_size: int = 1,
save_interval: int = 100,
save_dir: str = "./model",
eval_interval: int = -1,
):
self.num_producers = num_producers
self.num_episodes = num_episodes
@ -52,7 +51,6 @@ class BaseConsumer:
self.save_dir = save_dir
assert batch_size % minibatch_size == 0, "batch_size should be divisible by microbatch_size"
self.num_microbatches = batch_size // minibatch_size
self.eval_interval = eval_interval
self.model_config = model_config
self.plugin_config = plugin_config
@ -94,9 +92,6 @@ class BaseConsumer:
if self.rank == 0:
cc.init_collective_group(self.num_producers + 1, self.num_producers, group_name="sync_model")
for i in range(self.num_producers):
cc.init_collective_group(self.world_size + 1, self.rank + 1, group_name=f"sync_eval_statistics_{i}")
self.buffer = []
self.recv_cnt = 0
@ -114,24 +109,6 @@ class BaseConsumer:
with tqdm(range(self.num_update_per_episode), desc=f"Episode {episode}", disable=self.rank != 0) as pbar:
for step in pbar:
i = 0
if self.eval_interval > 0 and step % self.eval_interval == 0:
eval_statistics = None
for r in range(self.num_producers):
print(f"[T{dist.get_rank()}] Recv eval result episode {episode} step {step} from {r}")
local_eval_result = ray_broadcast_tensor_dict(
None, src=0, device=self.device, group_name=f"sync_eval_statistics_{r}"
)
if eval_statistics is None:
eval_statistics = local_eval_result
else:
eval_statistics = {
k: eval_statistics[k] + local_eval_result[k] for k in eval_statistics
}
eval_statistics = {k: (v[0] / v[1]).item() for k, v in eval_statistics.items()}
if dist.get_rank() == 0:
if hasattr(self, "wandb_run") and hasattr(self, "global_step"):
self.wandb_run.log(eval_statistics, step=self.global_step)
print(f"Eval statistics: {eval_statistics}")
for _ in range(self.num_recv_per_update):
# receive data from producers
for r in range(self.num_producers):
@ -214,7 +191,6 @@ class SimpleConsumer(BaseConsumer):
minibatch_size=1,
save_interval: int = 100,
save_dir="./model",
eval_interval: int = -1,
):
super().__init__(
num_producers,
@ -231,7 +207,6 @@ class SimpleConsumer(BaseConsumer):
minibatch_size,
save_interval,
save_dir,
eval_interval,
)
path = model_config.pop("path")
self.model = AutoModelForCausalLM.from_pretrained(path, **model_config)

View File

@ -34,13 +34,13 @@ class GRPOConsumer(BaseConsumer):
plugin_config,
minibatch_size=1,
num_generations=8,
use_wandb=True,
generate_config=None,
grpo_config={},
project_name=None,
save_interval: int = 100,
save_dir="./model",
eval_interval: int = -1,
project_name: str = None,
run_name: str = None,
wandb_group_name: str = None,
):
print(f"Using GRPO config: {grpo_config}")
if grpo_config.get("loss_variation", "sample_level") == "token_level":
@ -73,7 +73,6 @@ class GRPOConsumer(BaseConsumer):
minibatch_size,
save_interval=save_interval,
save_dir=save_dir,
eval_interval=eval_interval,
)
path = model_config.pop("path")
self.policy_model = AutoModelForCausalLM.from_pretrained(path, **model_config)
@ -93,6 +92,9 @@ class GRPOConsumer(BaseConsumer):
self.project_name = project_name
self.effective_sample_count = 0
self.total_sample_count = 0
self.project_name = project_name
self.run_name = run_name
self.wandb_group_name = wandb_group_name
self.policy_loss_fn = PolicyLoss(
clip_eps_low=grpo_config.get("clip_eps_low", 0.2),
@ -143,7 +145,6 @@ class GRPOConsumer(BaseConsumer):
**reward_model_kwargs,
)
self.global_step = 0
self.use_wandb = use_wandb
self.lr_scheduler = CosineAnnealingWarmupLR(
optimizer=self.optimizer,
@ -154,13 +155,16 @@ class GRPOConsumer(BaseConsumer):
def setup(self):
super().setup()
if self.use_wandb and (
(not self.plugin.pp_size > 1 and self.rank == 0)
or (self.plugin.pp_size > 1 and self.booster.plugin.stage_manager.is_last_stage() and self.tp_rank == 0)
if (not self.plugin.pp_size > 1 and self.rank == 0) or (
self.plugin.pp_size > 1 and self.booster.plugin.stage_manager.is_last_stage() and self.tp_rank == 0
):
# Initialize wandb.
name = f"{self.generate_config['backend']}_bs_{self.batch_size*self.dp_size}_temp_{self.generate_config['temperature']:.01f}_top_p_{self.generate_config['top_p']:.02f}"
self.wandb_run = wandb.init(project=self.project_name, sync_tensorboard=True, dir="./wandb", name=name)
self.wandb_run = wandb.init(
project=self.project_name,
sync_tensorboard=True,
dir="./wandb",
name=self.run_name,
group=self.wandb_group_name,
)
self.policy_model, self.optimizer, _, _, self.lr_scheduler = self.booster.boost(
self.policy_model, self.optimizer, lr_scheduler=self.lr_scheduler
@ -512,7 +516,7 @@ class GRPOConsumer(BaseConsumer):
}
if self.policy_loss_fn.beta > 0:
metrics["train/kl"] = self.accum_kl.item() / self.accum_count
if self.wandb_run is not None:
self.wandb_run.log(metrics)
self.accum_loss.zero_()
self.accum_reward.zero_()

View File

@ -238,7 +238,7 @@ class VLLMInferenceBackend(BaseInferenceBackend):
log_probs.append(p)
# pad them
max_len = self.generate_config.max_tokens
max_len = self.sample_params.max_tokens
action_mask = torch.ones(len(out_tokens), max_len, dtype=attention_mask.dtype)
for i, new_token_ids in enumerate(out_tokens):

View File

@ -1,4 +1,5 @@
import copy
import uuid
from typing import Any, Dict, Optional
import ray
@ -53,6 +54,7 @@ def launch_distributed(
eval_dataset_config: Optional[Dict[str, Any]] = None,
eval_interval: int = 100,
eval_save_dir: Optional[str] = None,
eval_generation_config: Optional[Dict[str, Any]] = None,
):
if core_algo not in ALGO_MAP:
@ -69,6 +71,9 @@ def launch_distributed(
num_update_per_episode = num_samples // global_inference_batch_size
num_recv_per_update = inference_batch_size // inference_microbatch_size
run_name = f"{inference_backend}_bs_{train_batch_size * train_dp_size}_temp_{generate_config['temperature']:.01f}_top_p_{generate_config['top_p']:.02f}"
wandb_group_name = str(uuid.uuid4())
procs = []
for i in range(num_producers):
producer = SimpleProducer.options(num_gpus=num_proc_per_producer).remote(
@ -90,6 +95,10 @@ def launch_distributed(
eval_interval=eval_interval,
evaluation_function_type=grpo_config["reward_fn_type"],
eval_save_dir=eval_save_dir,
eval_generation_config=eval_generation_config,
project_name=project_name,
run_name=run_name,
wandb_group_name=wandb_group_name,
)
procs.append(producer)
generate_config_consumer = copy.deepcopy(generate_config)
@ -115,10 +124,11 @@ def launch_distributed(
generate_config=generate_config_consumer,
grpo_config=grpo_config,
num_generations=num_generations,
project_name=project_name,
save_interval=save_interval,
save_dir=save_dir,
eval_interval=eval_interval,
project_name=project_name,
run_name=run_name,
wandb_group_name=wandb_group_name,
)
procs.append(consumer)
ray.get([p.setup.remote() for p in procs])

View File

@ -6,8 +6,11 @@ import ray
import ray.util.collective as cc
import torch
import tqdm
import wandb
from coati.dataset.loader import RawConversationDataset
from coati.distributed.reward.reward_fn import boxed_math_reward_fn, math_reward_fn
from ray.util.collective import allreduce
from ray.util.collective.types import Backend, ReduceOp
from torch.utils.data import DataLoader, DistributedSampler
from transformers import AutoTokenizer
@ -15,7 +18,7 @@ from colossalai.utils import get_current_device
from .comm import ray_broadcast_tensor_dict
from .inference_backend import BACKEND_MAP
from .utils import pre_send, safe_write_jsonl
from .utils import pre_send, safe_append_to_jsonl_file
try:
from vllm import SamplingParams
@ -43,6 +46,9 @@ class BaseProducer:
eval_interval=-1, # disable evaluation
evaluation_function_type="think_answer_tags",
eval_save_dir: str = "./eval",
project_name: str = None,
run_name: str = None,
wandb_group_name: str = None,
):
self.producer_idx = producer_idx
self.num_producers = num_producers
@ -61,6 +67,14 @@ class BaseProducer:
self.eval_interval = eval_interval
self.eval_save_dir = eval_save_dir
self.consumer_global_step = 0
if self.producer_idx == 0:
self.wandb_run = wandb.init(
project=project_name,
sync_tensorboard=True,
dir="./wandb",
name=run_name + "_eval",
group=wandb_group_name,
)
if os.path.exists(self.eval_save_dir):
raise ValueError(f"Eval save dir {self.eval_save_dir} already exists. Please delete it or change the name.")
@ -132,13 +146,18 @@ class BaseProducer:
self.consumer_pp_size = consumer_plugin_config.get("pp_size", 1) # consumer pp size
def setup(self) -> None:
cc.init_collective_group(
world_size=self.num_producers,
rank=self.producer_idx,
backend=Backend.NCCL,
group_name="producer_group",
)
cc.init_collective_group(1 + self.num_consumer_procs, 0, group_name=f"sync_data_{self.producer_idx}")
if self.consumer_pp_size > 1:
for i in range(self.consumer_pp_size):
cc.init_collective_group(self.num_producers + 1, self.producer_idx, group_name=f"sync_model_{i}")
else:
cc.init_collective_group(self.num_producers + 1, self.producer_idx, group_name="sync_model")
cc.init_collective_group(1 + self.num_consumer_procs, 0, group_name=f"sync_eval_statistics_{self.producer_idx}")
def rollout(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]:
raise NotImplementedError
@ -160,13 +179,14 @@ class BaseProducer:
break
if self.eval_interval > 0 and self.eval_dataset_config is not None:
if i % self.eval_interval == 0:
eval_statistics = {}
to_log_msg = {}
for eval_task_name in self.eval_dataloaders:
if self.producer_idx == 0:
print(
f"[P{self.producer_idx}] Evaluate episode {episode} step {i} on task {eval_task_name}"
)
eval_results = []
eval_statistics[eval_task_name] = torch.zeros(2, device=self.device)
eval_statistics_tensor = torch.zeros((2,), dtype=torch.float32).to(self.device)
for eval_batch in tqdm.tqdm(
self.eval_dataloaders[eval_task_name], disable=self.producer_idx != 0
):
@ -182,24 +202,27 @@ class BaseProducer:
for m in range(eval_outputs["input_ids"].size(0))
for n in range(eval_outputs["input_ids"].size(1))
]
eval_statistics[eval_task_name][0] += len(
[res for res in eval_results if res["ans_valid"] == 1]
eval_statistics_tensor[0] += len([res for res in eval_results if res["ans_valid"] == 1])
eval_statistics_tensor[1] += len(eval_results)
allreduce(eval_statistics_tensor, op=ReduceOp.SUM, group_name="producer_group")
to_log_msg[f"eval/{eval_task_name}"] = (
eval_statistics_tensor[0].item() / eval_statistics_tensor[1].item()
)
if self.producer_idx == 0:
print(
f"[P{self.producer_idx}]: Accuracy on {eval_task_name}: {to_log_msg[f'eval/{eval_task_name}']}"
)
eval_statistics[eval_task_name][1] += len(eval_results)
# save eval results
result_file_name = os.path.join(
safe_append_to_jsonl_file(
os.path.join(
self.eval_save_dir,
f"{eval_task_name}_episode_{episode}_step_{self.consumer_global_step}.jsonl",
),
eval_results,
)
# delete the file if it exists
safe_write_jsonl(result_file_name, eval_results)
print(f"[P{self.producer_idx}] Send eval statistics episode {episode} step {i}")
ray_broadcast_tensor_dict(
eval_statistics,
src=0,
device=self.device,
group_name=f"sync_eval_statistics_{self.producer_idx}",
)
if self.producer_idx == 0:
self.wandb_run.log(to_log_msg, step=self.consumer_global_step)
outputs = self.rollout(**batch)
print(f"[P{self.producer_idx}] Send data {[(k, v.shape) for k, v in outputs.items()]}")
@ -248,12 +271,11 @@ class BaseProducer:
# linear annealing for 1 episode, temperature from initial to 0.9
if episode <= 0:
ratio = 1 - (len(self.train_dataloader) - i) / len(self.train_dataloader)
if isinstance(self.model.generate_config.temperature, dict):
self.model.generate_config["temperature"] = (1 - ratio) * self.generate_config[
"temperature"
] + ratio * 0.9
else:
self.model.generate_config.temperature = (1 - ratio) * self.generate_config[
if isinstance(self.model, BACKEND_MAP["vllm"]):
self.model.sample_params.temperature = (1 - ratio) * self.generate_config[
"temperature"
] + ratio * 0.9
@ -280,6 +302,10 @@ class SimpleProducer(BaseProducer):
eval_interval=-1, # disable evaluation
evaluation_function_type="think_answer_tags",
eval_save_dir: str = "./eval",
eval_generation_config={},
project_name: str = None,
run_name: str = None,
wandb_group_name: str = None,
):
super().__init__(
producer_idx,
@ -299,10 +325,14 @@ class SimpleProducer(BaseProducer):
eval_interval=eval_interval,
evaluation_function_type=evaluation_function_type,
eval_save_dir=eval_save_dir,
project_name=project_name,
run_name=run_name,
wandb_group_name=wandb_group_name,
)
self.model = self.backend_cls(model_config, generate_config, self.tokenizer, num_generations)
self.eval_generation_config = copy.deepcopy(self.model.generate_config)
self.eval_generation_config["n"] = 1 # use 1 generation for evaluation
self.eval_generation_config.update(eval_generation_config)
self.eval_sample_params = SamplingParams(**self.eval_generation_config)
@torch.no_grad()

View File

@ -135,7 +135,7 @@ def masked_sum(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.
return tensor.sum(dim=dim)
def safe_write_jsonl(file_path, data):
def safe_append_to_jsonl_file(file_path, data):
with FileLock(file_path + ".lock"):
# Ensure file exists
os.makedirs(os.path.dirname(file_path), exist_ok=True)

View File

@ -161,6 +161,7 @@ if __name__ == "__main__":
stop_strings=["</answer>"] if args.reward_type == "think_answer_tags" else None,
)
)
eval_generation_config = {"temperature": 0.6} # used to update generation config for evaluation
elif args.backend == "vllm":
inference_model_config.update(
dict(
@ -179,6 +180,7 @@ if __name__ == "__main__":
stop=["</answer>"] if args.reward_type == "think_answer_tags" else None,
)
)
eval_generation_config = {"temperature": 0.6} # used to update generation config for evaluation
else:
raise ValueError(f"Unsupported backend: {args.backend}")
@ -257,4 +259,5 @@ if __name__ == "__main__":
},
eval_interval=args.eval_interval,
eval_save_dir=os.path.join(args.eval_save_dir, args.project.replace(" ", "_")),
eval_generation_config=eval_generation_config,
)