[FAW] add cache manager for the cached embedding (#1419)

This commit is contained in:
Jiarui Fang
2022-08-09 15:17:17 +08:00
committed by GitHub
parent 44fd3c83ab
commit 504419d261
7 changed files with 514 additions and 0 deletions

View File

@@ -0,0 +1,76 @@
import pytest
from functools import partial
import torch
import torch.multiprocessing as mp
import numpy as np
from colossalai.utils import free_port
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.nn._ops.cache_embedding import CachedParamMgr
NUM_EMBED, EMBED_DIM = 100, 8
BATCH_SIZE = 8
def test_cachemgr():
model = torch.nn.EmbeddingBag(10000, 128)
# 10 chunks, 5 in cuda
mgr = CachedParamMgr(model.weight, 5)
assert mgr.cuda_row_num == 5
mgr._admit(1)
assert not mgr._chunk_in_cuda(2)
assert mgr._chunk_in_cuda(1)
# print(mgr.cached_chunk_table)
mgr._admit(8)
# now 3 chunk is available
assert mgr.cuda_available_chunk_num == 3
mgr._evict()
assert mgr.cuda_available_chunk_num == 4
mgr._prepare_rows_on_cuda(torch.tensor([9, 6, 5], dtype=torch.long, device=0))
mgr._prepare_rows_on_cuda(torch.tensor([3, 4, 5], dtype=torch.long, device=0))
# print(mgr.cached_chunk_table)
# mgr.print_comm_stats()
mgr.flush()
assert mgr.cuda_available_chunk_num == 5
def test_reorder_with_freq():
num_embed = 100
chunk_size = 1
num_chunk = 5
idx_map = np.random.randint(10000, size=(num_embed,))
sorted_idx = np.flipud(np.argsort(idx_map)).tolist()
chunkid, offset_in_chunk = [], []
for i in range(num_embed):
idx = sorted_idx.index(i)
chunkid.append(idx // chunk_size)
offset_in_chunk.append(idx % chunk_size)
chunkid = torch.tensor(chunkid, dtype=torch.long, device=torch.cuda.current_device())
offset_in_chunk = torch.tensor(offset_in_chunk, dtype=torch.long, device=torch.cuda.current_device())
weight = torch.rand(num_embed, 2)
mgr = CachedParamMgr(weight, num_chunk)
mgr.reorder(idx_map)
indices = mgr.idx_map.index_select(0, torch.arange(num_embed, dtype=torch.long, device=torch.cuda.current_device()))
mgr_chunk_id = torch.div(indices, chunk_size, rounding_mode='floor')
mgr_offsets = torch.remainder(indices, chunk_size)
assert torch.allclose(chunkid, mgr_chunk_id), f"chunk id: {chunkid}, mgr: {mgr_chunk_id}"
assert torch.allclose(offset_in_chunk, mgr_offsets), \
f"offset in chunk: {offset_in_chunk}, mgr: {mgr_offsets}"
if __name__ == '__main__':
# test_freq_aware_embed()
# test_chunkmgr_admit()
pass