mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-23 02:20:49 +00:00
[doc] add shardformer support matrix/update tensor parallel documents (#4728)
* add compatibility matrix for shardformer doc * update tp doc
This commit is contained in:
@@ -2,14 +2,12 @@
|
||||
|
||||
作者: Zhengda Bian, Yongbin Li
|
||||
|
||||
> ⚠️ 此页面上的信息已经过时并将被废弃。请在[Shardformer](./shardformer.md)页面查阅更新。
|
||||
|
||||
**前置教程**
|
||||
- [定义配置文件](../basics/define_your_config.md)
|
||||
- [并行配置](../basics/configure_parallelization.md)
|
||||
|
||||
**示例代码**
|
||||
- [ColossalAI-Examples 1D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/blob/main/features/tensor_parallel/README.md)
|
||||
**示例代码**xw
|
||||
- [Tensor Parallelism with Shardformer](https://github.com/hpcaitech/ColossalAI/tree/main/colossalai/shardformer/examples)
|
||||
|
||||
**相关论文**
|
||||
- [Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM](https://deepakn94.github.io/assets/papers/megatron-sc21.pdf)
|
||||
@@ -43,82 +41,10 @@ $$
|
||||
| :-: | :-: | :-: | :-: | :-: |
|
||||
| $O(1/P)$ | $O(1/P)$ | $O(1)$ | $O(2(P-1)/P)$ | $O(2(P-1))$ |
|
||||
|
||||
|
||||
## 使用
|
||||
|
||||
为了使模型能够实现一维张量并行, 如在2个 GPU 上, 我们需要配置如下的并行设置。
|
||||
```python
|
||||
CONFIG = dict(parallel=dict(
|
||||
data=1,
|
||||
pipeline=1,
|
||||
tensor=dict(size=2, mode='1d'),
|
||||
))
|
||||
```
|
||||
|
||||
然后 Colossal-AI 会自动对所有来自 `colossalai.nn` 的层应用1D张量并行。
|
||||
|
||||
让我们定义一个由两层多层感知器 (MLP) 组成的模型,如下所示。
|
||||
```python
|
||||
import colossalai
|
||||
import colossalai.nn as col_nn
|
||||
import torch
|
||||
from colossalai.utils import print_rank_0
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
def __init__(self, dim: int = 256):
|
||||
super().__init__()
|
||||
intermediate_dim = dim * 4
|
||||
self.dense_1 = col_nn.Linear(dim, intermediate_dim)
|
||||
print_rank_0(f'Weight of the first linear layer: {self.dense_1.weight.transpose(0, 1).shape}')
|
||||
self.activation = torch.nn.GELU()
|
||||
self.dense_2 = col_nn.Linear(intermediate_dim, dim)
|
||||
print_rank_0(f'Weight of the second linear layer: {self.dense_2.weight.transpose(0, 1).shape}')
|
||||
self.dropout = col_nn.Dropout(0.1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dense_1(x)
|
||||
print_rank_0(f'Output of the first linear layer: {x.shape}')
|
||||
x = self.activation(x)
|
||||
x = self.dense_2(x)
|
||||
print_rank_0(f'Output of the second linear layer: {x.shape}')
|
||||
x = self.dropout(x)
|
||||
return x
|
||||
```
|
||||
|
||||
在2个 GPU 上启动 Colossal-AI 并建立模型。
|
||||
|
||||
```python
|
||||
parser = colossalai.get_default_parser()
|
||||
colossalai.launch(config=CONFIG,
|
||||
rank=args.rank,
|
||||
world_size=args.world_size,
|
||||
local_rank=args.local_rank,
|
||||
host=args.host,
|
||||
port=args.port)
|
||||
|
||||
m = MLP()
|
||||
```
|
||||
我们将会看到 MLP 模型中被划分的参数(如权重)的形状。
|
||||
```shell
|
||||
Weight of the first linear layer: torch.Size([256, 512])
|
||||
Weight of the second linear layer: torch.Size([512, 256])
|
||||
```
|
||||
第一个线性层的完整权重形状应该为 `[256, 1024]`. 经过列-并行分割,它变成了 `[256, 512]`。
|
||||
同样地,第二个行并行层将权重 `[1024, 256]` 划分为 `[512, 256]`。
|
||||
|
||||
我们可以用一些随机输入来运行这个模型。
|
||||
```python
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
x = torch.randn((16, 256), device=get_current_device())
|
||||
torch.distributed.broadcast(x, src=0) # synchronize input
|
||||
|
||||
x = m(x)
|
||||
```
|
||||
然后我们可以看到 activation 结果的形状。
|
||||
```shell
|
||||
Output of the first linear layer: torch.Size([16, 512])
|
||||
Output of the second linear layer: torch.Size([16, 256])
|
||||
```
|
||||
第一个线性层的输出被划分成2块 (每个形状为 `[16, 512]`), 而第二层在整个 GPU 上的输出是相同的。
|
||||
在ColossalAI最新的版本中,1D张量并行由`Shardformer`功能实现。
|
||||
关于`Shardformer`的原理和用法细节请参考当前目录下的Shardformer文档。
|
||||
|
||||
<!-- doc-test-command: echo -->
|
||||
|
Reference in New Issue
Block a user