mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-07-06 12:07:00 +00:00
[autoparallel] runtime_backward_apply (#1720)
This commit is contained in:
parent
393f594051
commit
51b89d2202
@ -1,3 +1,4 @@
|
|||||||
|
from ast import NodeTransformer
|
||||||
import torch
|
import torch
|
||||||
from typing import List
|
from typing import List
|
||||||
from torch.fx import symbolic_trace
|
from torch.fx import symbolic_trace
|
||||||
@ -10,10 +11,32 @@ import builtins
|
|||||||
import operator
|
import operator
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
|
||||||
|
|
||||||
def apply(*args, **kwargs):
|
|
||||||
shape_consistency_manager = ShapeConsistencyManager()
|
shape_consistency_manager = ShapeConsistencyManager()
|
||||||
return shape_consistency_manager.apply(*args, **kwargs)
|
|
||||||
|
|
||||||
|
class ConsistencyApply(torch.autograd.Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, node, origin_dict, input_dict, node_index, user_node_index):
|
||||||
|
ctx.origin_sharding_spec = origin_dict[node_index]
|
||||||
|
ctx.target_sharding_spec = input_dict[node_index][user_node_index]
|
||||||
|
return shape_consistency_manager.apply_for_autoparallel_runtime(node, ctx.origin_sharding_spec,
|
||||||
|
ctx.target_sharding_spec)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, node_grad):
|
||||||
|
return shape_consistency_manager.apply_for_autoparallel_runtime(
|
||||||
|
node_grad, ctx.target_sharding_spec, ctx.origin_sharding_spec), None, None, None, None
|
||||||
|
|
||||||
|
|
||||||
|
def runtime_apply_for_leaf_node(node, origin_dict, input_dict, node_index, user_node_index):
|
||||||
|
return ConsistencyApply.apply(node, origin_dict, input_dict, node_index, user_node_index)
|
||||||
|
|
||||||
|
|
||||||
|
def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index):
|
||||||
|
origin_sharding_spec = origin_dict[node_index]
|
||||||
|
target_sharding_spec = input_dict[node_index][user_node_index]
|
||||||
|
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec)
|
||||||
|
|
||||||
|
|
||||||
def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh):
|
def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh):
|
||||||
@ -37,21 +60,19 @@ def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], de
|
|||||||
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {})
|
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {})
|
||||||
setattr(param, 'sharding_spec', origin_sharding_spec)
|
setattr(param, 'sharding_spec', origin_sharding_spec)
|
||||||
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
||||||
apply(param, target_sharding_spec)
|
shape_consistency_manager.apply(param, target_sharding_spec)
|
||||||
|
|
||||||
for name, buffer in target_module.named_buffers():
|
for name, buffer in target_module.named_buffers():
|
||||||
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {})
|
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {})
|
||||||
setattr(buffer, 'sharding_spec', origin_sharding_spec)
|
setattr(buffer, 'sharding_spec', origin_sharding_spec)
|
||||||
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
||||||
apply(buffer, target_sharding_spec)
|
shape_consistency_manager.apply(buffer, target_sharding_spec)
|
||||||
|
|
||||||
# the dict to get input sharding specs of user node
|
# the dict to get input sharding specs of user node
|
||||||
sharding_spec_convert_dict = {}
|
sharding_spec_convert_dict = {}
|
||||||
for index, node in enumerate(nodes):
|
for index, node in enumerate(nodes):
|
||||||
target_sharding_specs = []
|
target_sharding_specs = []
|
||||||
for user_node in node.strategies_vector.successor_nodes:
|
for user_node in node.strategies_vector.successor_nodes:
|
||||||
# node_index = user_node.strategies_vector.predecessor_nodes.index(node)
|
|
||||||
# target_sharding_spec = user_node.best_strategy.input_shardings[node_index]
|
|
||||||
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name))
|
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name))
|
||||||
target_sharding_specs.append(target_sharding_spec)
|
target_sharding_specs.append(target_sharding_spec)
|
||||||
sharding_spec_convert_dict[index] = target_sharding_specs
|
sharding_spec_convert_dict[index] = target_sharding_specs
|
||||||
@ -91,28 +112,28 @@ def shape_consistency_pass(gm: torch.fx.GraphModule):
|
|||||||
|
|
||||||
# add shape consistency apply function into graph
|
# add shape consistency apply function into graph
|
||||||
for node in nodes:
|
for node in nodes:
|
||||||
if not hasattr(node, 'best_strategy'):
|
if not hasattr(node, 'best_strategy') or node.op == 'output':
|
||||||
continue
|
continue
|
||||||
with mod_graph.inserting_after(node):
|
|
||||||
origin_spec_node = mod_graph.create_node('call_function',
|
|
||||||
operator.getitem,
|
|
||||||
args=(origin_dict_node, node_to_index_dict[node]))
|
|
||||||
with mod_graph.inserting_after(origin_spec_node):
|
|
||||||
set_sharding_spec_node = mod_graph.create_node('call_function',
|
|
||||||
builtins.setattr,
|
|
||||||
args=(node, 'sharding_spec', origin_spec_node))
|
|
||||||
|
|
||||||
for user_node in node.strategies_vector.successor_nodes:
|
for user_node in node.strategies_vector.successor_nodes:
|
||||||
node_index = user_node.strategies_vector.predecessor_nodes.index(node)
|
user_node_index = user_node.strategies_vector.predecessor_nodes.index(node)
|
||||||
|
if user_node.op != "output":
|
||||||
with mod_graph.inserting_before(user_node):
|
with mod_graph.inserting_before(user_node):
|
||||||
input_specs_node = mod_graph.create_node('call_function',
|
shape_consistency_node = mod_graph.create_node('call_function',
|
||||||
operator.getitem,
|
runtime_apply,
|
||||||
args=(input_dict_node, node_to_index_dict[node]))
|
args=(node, origin_dict_node, input_dict_node,
|
||||||
|
node_to_index_dict[node], user_node_index))
|
||||||
|
else:
|
||||||
|
# we need to call an autograd.Function for leaf node
|
||||||
with mod_graph.inserting_before(user_node):
|
with mod_graph.inserting_before(user_node):
|
||||||
sharding_spec_node = mod_graph.create_node('call_function',
|
shape_consistency_node = mod_graph.create_node('call_function',
|
||||||
operator.getitem,
|
runtime_apply_for_leaf_node,
|
||||||
args=(input_specs_node, node_index))
|
args=(node, origin_dict_node, input_dict_node,
|
||||||
with mod_graph.inserting_before(user_node):
|
node_to_index_dict[node], user_node_index))
|
||||||
shape_consistency_node = mod_graph.create_node('call_function', apply, args=(node, sharding_spec_node))
|
|
||||||
|
origin_index_args = user_node.args.index(node)
|
||||||
|
new_args = list(user_node.args)
|
||||||
|
new_args[origin_index_args] = shape_consistency_node
|
||||||
|
user_node.args = new_args
|
||||||
|
|
||||||
return gm
|
return gm
|
||||||
|
@ -498,3 +498,11 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
|
|||||||
for comm_spec in comm_action_sequence:
|
for comm_spec in comm_action_sequence:
|
||||||
comm_spec.covert_spec_to_action(tensor_with_sharding_spec)
|
comm_spec.covert_spec_to_action(tensor_with_sharding_spec)
|
||||||
tensor_with_sharding_spec.sharding_spec = target_spec
|
tensor_with_sharding_spec.sharding_spec = target_spec
|
||||||
|
return tensor_with_sharding_spec
|
||||||
|
|
||||||
|
def apply_for_autoparallel_runtime(self, tensor, source_spec, target_spec):
|
||||||
|
_, comm_action_sequence, _ = self.shape_consistency(source_spec, target_spec)
|
||||||
|
for comm_spec in comm_action_sequence:
|
||||||
|
comm_spec.covert_spec_to_action(tensor)
|
||||||
|
tensor.sharding_spec = target_spec
|
||||||
|
return tensor
|
Loading…
Reference in New Issue
Block a user