mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-17 23:18:36 +00:00
[checkpoint] make unitest faster (#1217)
This commit is contained in:
@@ -5,7 +5,8 @@ import collections
|
||||
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
|
||||
from colossalai.utils.model.colo_init_context import colo_state_dict
|
||||
|
||||
def save_checkpoint(dire,
|
||||
|
||||
def save_checkpoint(dire: str,
|
||||
epoch: int,
|
||||
model: torch.nn.Module,
|
||||
optimizer: torch.optim.Optimizer = None,
|
||||
@@ -15,30 +16,21 @@ def save_checkpoint(dire,
|
||||
"""save_checkpoint
|
||||
save a model, whose parameters are `ColoTensor`s.
|
||||
Args:
|
||||
dire (_type_): _description_
|
||||
epoch (int): _description_
|
||||
model (torch.nn.Module): _description_
|
||||
optimizer (torch.optim.Optimizer, optional): _description_. Defaults to None.
|
||||
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
|
||||
dire (str): directory to save the checkpoint files.
|
||||
epoch (int): the number of epoch
|
||||
model (torch.nn.Module): a torch module initialized by ColoInitContext
|
||||
optimizer (torch.optim.Optimizer, optional): optimizers. Defaults to None.
|
||||
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): lr schedule. Defaults to None.
|
||||
"""
|
||||
model_state = {
|
||||
'epoch': epoch,
|
||||
'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)
|
||||
}
|
||||
model_state = {'epoch': epoch, 'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)}
|
||||
if dist.get_rank() == 0:
|
||||
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
|
||||
lr_scheduler_dict = lr_scheduler.state_dict()
|
||||
lr_scheduler_dict['after_scheduler'] = lr_scheduler_dict['after_scheduler'].state_dict()
|
||||
optim_state = {
|
||||
'epoch': epoch,
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'lr_scheduler': lr_scheduler_dict
|
||||
}
|
||||
optim_state = {'epoch': epoch, 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler_dict}
|
||||
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
|
||||
|
||||
|
||||
|
||||
|
||||
def load_checkpoint(dire,
|
||||
epoch: int,
|
||||
rank: int,
|
||||
@@ -64,10 +56,7 @@ def load_checkpoint(dire,
|
||||
optimizer.load_state_dict(optim_state['optimizer'])
|
||||
lr_scheduler_dict = optim_state['lr_scheduler']
|
||||
after_scheduler_dict = lr_scheduler_dict['after_scheduler']
|
||||
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(
|
||||
optimizer,
|
||||
after_scheduler_dict['T_max'],
|
||||
after_scheduler_dict['eta_min'],
|
||||
after_scheduler_dict['last_epoch']
|
||||
)
|
||||
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(optimizer, after_scheduler_dict['T_max'],
|
||||
after_scheduler_dict['eta_min'],
|
||||
after_scheduler_dict['last_epoch'])
|
||||
lr_scheduler.load_state_dict(lr_scheduler_dict)
|
||||
|
Reference in New Issue
Block a user