[autoparallel] implement softmax handler (#2132)

This commit is contained in:
YuliangLiu0306
2022-12-14 16:09:53 +08:00
committed by GitHub
parent c89c66a858
commit 536560ccc0
6 changed files with 349 additions and 4 deletions

View File

@@ -0,0 +1,186 @@
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
from colossalai.auto_parallel.tensor_shard.node_handler.softmax_handler import SoftmaxHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
class LinearSplitModel(nn.Module):
def __init__(self, softmax_dim):
super().__init__()
self.softmax_dim = softmax_dim
def forward(self, input, other):
linear_node = F.linear(input, other, bias=None)
softmax_node = F.softmax(linear_node, self.softmax_dim)
return softmax_node
def check_split_handler(rank, softmax_dim, model_cls, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = model_cls(softmax_dim=softmax_dim).cuda()
input = torch.rand(8, 16, 64, 32).to('cuda')
other = torch.rand(64, 32).to('cuda')
# index of linear node in computation graph
node_index = 2
# total number of linear strategies
strategy_number = 23
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
numerical_test_for_node_strategy(model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=[input, other],
meta_arg_names=['input', 'other'],
node_type='following')
tracer = ColoTracer()
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %other : torch.Tensor [#users=1] = placeholder[target=other]
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None})
# %softmax : [#users=1] = call_method[target=split](args = (%linear,), kwargs = {})
# return split
graph = tracer.trace(model,
meta_args={
"input": torch.rand(8, 16, 64, 32).to('meta'),
"other": torch.rand(64, 32).to('meta'),
})
gm = ColoGraphModule(model, graph)
previous_mod_node = list(graph.nodes)[2]
split_node = list(graph.nodes)[3]
split_strategies_vector = StrategiesVector(split_node)
previous_strategies_vector = StrategiesVector(previous_mod_node)
# build handler
assert len(previous_strategies_vector) == 0
linear_handler = LinearFunctionHandler(node=previous_mod_node,
device_mesh=device_mesh,
strategies_vector=previous_strategies_vector)
linear_handler.register_strategy(compute_resharding_cost=False)
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
softmax_handler = SoftmaxHandler(node=split_node,
device_mesh=device_mesh,
strategies_vector=split_strategies_vector)
softmax_handler.register_strategy(compute_resharding_cost=False)
# check operation data mapping
mapping = softmax_handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.data is not None
assert mapping['input'].name == "linear"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([8, 16, 64, 64])
assert mapping['softmax_dim'].name == "softmax_dim"
assert mapping['softmax_dim'].data == softmax_dim
assert mapping['softmax_dim'].type == OperationDataType.ARG
assert mapping['output'].name == "softmax"
assert mapping['output'].data.shape == torch.Size([8, 16, 64, 64])
assert mapping['output'].logical_shape == torch.Size([8, 16, 64, 64])
assert mapping['output'].type == OperationDataType.OUTPUT
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
assert len(split_strategies_vector) == len(previous_strategies_vector)
strategy_name_list = [strategy.name for strategy in split_strategies_vector]
if softmax_dim == 0:
assert '[R, R, R, S1] -> [R, R, R, S1]_0' in strategy_name_list
assert '[R, S0, R, S1] -> [R, S0, R, S1]_1' in strategy_name_list
assert '[R, R, S0, S1] -> [R, R, S0, S1]_2' in strategy_name_list
assert '[R, R, R, S0] -> [R, R, R, S0]_3' in strategy_name_list
assert '[R, S1, R, S0] -> [R, S1, R, S0]_4' in strategy_name_list
assert '[R, R, S1, S0] -> [R, R, S1, S0]_5' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_6' in strategy_name_list
assert '[R, S0, R, R] -> [R, S0, R, R]_7' in strategy_name_list
assert '[R, R, S0, R] -> [R, R, S0, R]_8' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_9' in strategy_name_list
assert '[R, S1, R, R] -> [R, S1, R, R]_10' in strategy_name_list
assert '[R, R, S1, R] -> [R, R, S1, R]_11' in strategy_name_list
assert '[R, R, R, S1] -> [R, R, R, S1]_12' in strategy_name_list
assert '[R, R, R, S0] -> [R, R, R, S0]_13' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_14' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_15' in strategy_name_list
assert '[R, R, R, S0] -> [R, R, R, S0]_16' in strategy_name_list
assert '[R, R, R, S1] -> [R, R, R, S1]_17' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_18' in strategy_name_list
assert '[R, S01, R, R] -> [R, S01, R, R]_19' in strategy_name_list
assert '[R, R, S01, R] -> [R, R, S01, R]_20' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_21' in strategy_name_list
assert '[R, R, R, S01] -> [R, R, R, S01]_22' in strategy_name_list
if softmax_dim == 1:
assert '[S0, R, R, S1] -> [S0, R, R, S1]_0' in strategy_name_list
assert '[R, R, R, S1] -> [R, R, R, S1]_1' in strategy_name_list
assert '[R, R, S0, S1] -> [R, R, S0, S1]_2' in strategy_name_list
assert '[S1, R, R, S0] -> [S1, R, R, S0]_3' in strategy_name_list
assert '[R, R, R, S0] -> [R, R, R, S0]_4' in strategy_name_list
assert '[R, R, S1, S0] -> [R, R, S1, S0]_5' in strategy_name_list
assert '[S0, R, R, R] -> [S0, R, R, R]_6' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_7' in strategy_name_list
assert '[R, R, S0, R] -> [R, R, S0, R]_8' in strategy_name_list
assert '[S1, R, R, R] -> [S1, R, R, R]_9' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_10' in strategy_name_list
assert '[R, R, S1, R] -> [R, R, S1, R]_11' in strategy_name_list
assert '[R, R, R, S1] -> [R, R, R, S1]_12' in strategy_name_list
assert '[R, R, R, S0] -> [R, R, R, S0]_13' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_14' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_15' in strategy_name_list
assert '[R, R, R, S0] -> [R, R, R, S0]_16' in strategy_name_list
assert '[R, R, R, S1] -> [R, R, R, S1]_17' in strategy_name_list
assert '[S01, R, R, R] -> [S01, R, R, R]_18' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_19' in strategy_name_list
assert '[R, R, S01, R] -> [R, R, S01, R]_20' in strategy_name_list
assert '[R, R, R, R] -> [R, R, R, R]_21' in strategy_name_list
assert '[R, R, R, S01] -> [R, R, R, S01]_22' in strategy_name_list
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
@parameterize('softmax_dim', [0, 1, 2, 3])
@parameterize('model_cls', [LinearSplitModel])
def test_split_handler(softmax_dim, model_cls):
world_size = 4
run_func = partial(check_split_handler,
softmax_dim=softmax_dim,
model_cls=model_cls,
world_size=world_size,
port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_split_handler()