mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-24 06:29:09 +00:00
Merge pull request #6283 from wangbluo/upgrade_falcon
[shardformer] Upgrade transformers version: falcon model
This commit is contained in:
commit
5374601741
@ -1,4 +1,3 @@
|
|||||||
import math
|
|
||||||
import warnings
|
import warnings
|
||||||
from typing import List, Optional, Tuple, Union
|
from typing import List, Optional, Tuple, Union
|
||||||
|
|
||||||
@ -6,11 +5,6 @@ import torch
|
|||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
from torch.distributed import ProcessGroup
|
from torch.distributed import ProcessGroup
|
||||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||||
from transformers.modeling_attn_mask_utils import (
|
|
||||||
AttentionMaskConverter,
|
|
||||||
_prepare_4d_causal_attention_mask,
|
|
||||||
_prepare_4d_causal_attention_mask_for_sdpa,
|
|
||||||
)
|
|
||||||
from transformers.modeling_outputs import (
|
from transformers.modeling_outputs import (
|
||||||
BaseModelOutputWithPastAndCrossAttentions,
|
BaseModelOutputWithPastAndCrossAttentions,
|
||||||
CausalLMOutputWithCrossAttentions,
|
CausalLMOutputWithCrossAttentions,
|
||||||
@ -114,6 +108,10 @@ def get_tp_falcon_decoder_layer_forward():
|
|||||||
head_mask: Optional[torch.Tensor] = None,
|
head_mask: Optional[torch.Tensor] = None,
|
||||||
use_cache: bool = False,
|
use_cache: bool = False,
|
||||||
output_attentions: bool = False,
|
output_attentions: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
position_embeddings: Optional[
|
||||||
|
Tuple[torch.Tensor, torch.Tensor]
|
||||||
|
] = None, # Add cache_position and position_embeddings args for v4.51.3 transformers
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
if "padding_mask" in kwargs:
|
if "padding_mask" in kwargs:
|
||||||
@ -122,7 +120,8 @@ def get_tp_falcon_decoder_layer_forward():
|
|||||||
)
|
)
|
||||||
residual = hidden_states
|
residual = hidden_states
|
||||||
|
|
||||||
if self.config.new_decoder_architecture:
|
# same as v4.51.3 transformers
|
||||||
|
if self.config.new_decoder_architecture and self.config.num_ln_in_parallel_attn == 2:
|
||||||
attention_layernorm_out = self.ln_attn(hidden_states)
|
attention_layernorm_out = self.ln_attn(hidden_states)
|
||||||
mlp_layernorm_out = self.ln_mlp(hidden_states)
|
mlp_layernorm_out = self.ln_mlp(hidden_states)
|
||||||
else:
|
else:
|
||||||
@ -138,7 +137,8 @@ def get_tp_falcon_decoder_layer_forward():
|
|||||||
head_mask=head_mask,
|
head_mask=head_mask,
|
||||||
use_cache=use_cache,
|
use_cache=use_cache,
|
||||||
output_attentions=output_attentions,
|
output_attentions=output_attentions,
|
||||||
**kwargs,
|
cache_position=cache_position,
|
||||||
|
position_embeddings=position_embeddings,
|
||||||
)
|
)
|
||||||
|
|
||||||
attention_output = attn_outputs[0]
|
attention_output = attn_outputs[0]
|
||||||
@ -151,6 +151,13 @@ def get_tp_falcon_decoder_layer_forward():
|
|||||||
attention_output, residual, self.config.attention_dropout, training=self.training
|
attention_output, residual, self.config.attention_dropout, training=self.training
|
||||||
)
|
)
|
||||||
mlp_layernorm_out = self.post_attention_layernorm(residual)
|
mlp_layernorm_out = self.post_attention_layernorm(residual)
|
||||||
|
# v4.51.3 transformers mlp
|
||||||
|
if (
|
||||||
|
self.config.new_decoder_architecture
|
||||||
|
and self.config.parallel_attn
|
||||||
|
and self.config.num_ln_in_parallel_attn == 1
|
||||||
|
):
|
||||||
|
mlp_layernorm_out = attention_layernorm_out
|
||||||
|
|
||||||
outputs = attn_outputs[1:]
|
outputs = attn_outputs[1:]
|
||||||
|
|
||||||
@ -190,11 +197,14 @@ class FalconPipelineForwards:
|
|||||||
output_attentions: Optional[bool] = None,
|
output_attentions: Optional[bool] = None,
|
||||||
output_hidden_states: Optional[bool] = None,
|
output_hidden_states: Optional[bool] = None,
|
||||||
return_dict: Optional[bool] = None,
|
return_dict: Optional[bool] = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
stage_manager: Optional[PipelineStageManager] = None,
|
stage_manager: Optional[PipelineStageManager] = None,
|
||||||
hidden_states: Optional[torch.FloatTensor] = None,
|
hidden_states: Optional[torch.FloatTensor] = None,
|
||||||
stage_index: Optional[List[int]] = None,
|
stage_index: Optional[List[int]] = None,
|
||||||
shard_config: ShardConfig = None,
|
shard_config: ShardConfig = None,
|
||||||
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||||||
|
# Add cache_position and position_embeddings args for v4.51.3 transformers
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
logger = logging.get_logger(__name__)
|
||||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
output_hidden_states = (
|
output_hidden_states = (
|
||||||
@ -206,9 +216,8 @@ class FalconPipelineForwards:
|
|||||||
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
||||||
use_cache = False
|
use_cache = False
|
||||||
|
|
||||||
if past_key_values is not None:
|
logger.warning_once("past_key_values is not supported for pipeline models at the moment.")
|
||||||
logger.warning_once("past_key_values is not supported for pipeline models at the moment.")
|
past_key_values = None
|
||||||
past_key_values = None
|
|
||||||
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
@ -229,9 +238,6 @@ class FalconPipelineForwards:
|
|||||||
input_shape = hidden_states.shape[:-1]
|
input_shape = hidden_states.shape[:-1]
|
||||||
batch_size, seq_length = input_shape
|
batch_size, seq_length = input_shape
|
||||||
|
|
||||||
if past_key_values is None:
|
|
||||||
past_key_values = tuple([None] * len(self.h))
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
if self.gradient_checkpointing and self.training:
|
||||||
if use_cache:
|
if use_cache:
|
||||||
logger.warning(
|
logger.warning(
|
||||||
@ -243,10 +249,11 @@ class FalconPipelineForwards:
|
|||||||
all_hidden_states = () if output_hidden_states else None
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
|
||||||
# Compute alibi tensor: check build_alibi_tensor documentation
|
# Compute alibi tensor: check build_alibi_tensor documentation
|
||||||
|
# alibi calculation is same as v4.51.3 transformers.
|
||||||
|
alibi = None
|
||||||
past_key_values_length = 0
|
past_key_values_length = 0
|
||||||
if past_key_values[0] is not None:
|
|
||||||
past_key_values_length = past_key_values[0][0].shape[-2]
|
|
||||||
|
|
||||||
|
batch_size, seq_length, _ = hidden_states.shape
|
||||||
if self.use_alibi:
|
if self.use_alibi:
|
||||||
mask = (
|
mask = (
|
||||||
torch.ones(
|
torch.ones(
|
||||||
@ -256,73 +263,32 @@ class FalconPipelineForwards:
|
|||||||
else attention_mask
|
else attention_mask
|
||||||
)
|
)
|
||||||
alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype)
|
alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype)
|
||||||
else:
|
|
||||||
alibi = None
|
|
||||||
if position_ids is None:
|
|
||||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
||||||
position_ids = torch.arange(
|
|
||||||
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
||||||
)
|
|
||||||
position_ids = position_ids.unsqueeze(0)
|
|
||||||
|
|
||||||
if self._use_flash_attention_2:
|
if cache_position is None:
|
||||||
# 2d mask is passed through the layers
|
cache_position = torch.arange(
|
||||||
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
past_key_values_length, past_key_values_length + seq_length, device=hidden_states.device
|
||||||
elif self._use_sdpa and not output_attentions:
|
|
||||||
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
|
||||||
# the manual implementation that requires a 4D causal mask in all cases.
|
|
||||||
if alibi is None:
|
|
||||||
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
|
||||||
attention_mask,
|
|
||||||
(batch_size, seq_length),
|
|
||||||
inputs_embeds,
|
|
||||||
past_key_values_length,
|
|
||||||
)
|
|
||||||
elif head_mask is None:
|
|
||||||
alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:])
|
|
||||||
|
|
||||||
attention_mask_2d = attention_mask
|
|
||||||
# We don't call _prepare_4d_causal_attention_mask_for_sdpa as we need to mask alibi using the 4D attention_mask untouched.
|
|
||||||
attention_mask = _prepare_4d_causal_attention_mask(
|
|
||||||
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
||||||
)
|
|
||||||
|
|
||||||
# We take care to integrate alibi bias in the attention_mask here.
|
|
||||||
if attention_mask_2d is None:
|
|
||||||
attention_mask = alibi / math.sqrt(self.config.hidden_size // self.num_heads)
|
|
||||||
else:
|
|
||||||
min_dtype = torch.finfo(alibi.dtype).min
|
|
||||||
attention_mask = torch.masked_fill(
|
|
||||||
alibi / math.sqrt(self.config.hidden_size // self.num_heads),
|
|
||||||
attention_mask < -1,
|
|
||||||
min_dtype,
|
|
||||||
)
|
|
||||||
|
|
||||||
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
|
|
||||||
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
|
|
||||||
if seq_length > 1 and attention_mask.device.type == "cuda":
|
|
||||||
attention_mask = AttentionMaskConverter._unmask_unattended(attention_mask, min_dtype=min_dtype)
|
|
||||||
else:
|
|
||||||
# PyTorch SDPA does not support head_mask, we fall back on the eager implementation in this case.
|
|
||||||
attention_mask = _prepare_4d_causal_attention_mask(
|
|
||||||
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
# 4d mask is passed through the layers
|
|
||||||
attention_mask = _prepare_4d_causal_attention_mask(
|
|
||||||
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if position_ids is None:
|
||||||
|
position_ids = cache_position.unsqueeze(0)
|
||||||
|
# use new version of causal mask construction.
|
||||||
|
# In v4.51.3 version, sdpa, egaer and flash attention are merged into one class.
|
||||||
|
causal_mask = self._update_causal_mask(
|
||||||
|
attention_mask, hidden_states, cache_position, past_key_values, output_attentions, head_mask, alibi
|
||||||
|
)
|
||||||
|
|
||||||
# Prepare head mask if needed
|
# Prepare head mask if needed
|
||||||
# 1.0 in head_mask indicate we keep the head
|
# 1.0 in head_mask indicate we keep the head
|
||||||
# attention_probs has shape batch_size x num_heads x N x N
|
# attention_probs has shape batch_size x num_heads x N x N
|
||||||
# head_mask has shape n_layer x batch x num_heads x N x N
|
# head_mask has shape n_layer x batch x num_heads x N x N
|
||||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||||
|
|
||||||
|
# v4.51.3 create position embeddings to be shared across the decoder layers
|
||||||
|
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
||||||
|
|
||||||
start_idx, end_idx = stage_index[0], stage_index[1]
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
||||||
for i, (block, layer_past) in enumerate(
|
# keep past_key_values arg same with v4.51.3 transformers
|
||||||
zip(self.h[start_idx:end_idx], past_key_values[start_idx:end_idx]), start=start_idx
|
for i, block in enumerate(self.h[start_idx:end_idx], start=start_idx):
|
||||||
):
|
|
||||||
if output_hidden_states:
|
if output_hidden_states:
|
||||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
@ -331,28 +297,32 @@ class FalconPipelineForwards:
|
|||||||
block.__call__,
|
block.__call__,
|
||||||
hidden_states,
|
hidden_states,
|
||||||
alibi,
|
alibi,
|
||||||
attention_mask,
|
causal_mask,
|
||||||
position_ids,
|
position_ids,
|
||||||
head_mask[i],
|
head_mask[i],
|
||||||
layer_past,
|
past_key_values,
|
||||||
use_cache,
|
use_cache,
|
||||||
output_attentions,
|
output_attentions,
|
||||||
|
cache_position,
|
||||||
|
position_embeddings,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
outputs = block(
|
outputs = block(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
layer_past=layer_past,
|
layer_past=past_key_values,
|
||||||
attention_mask=attention_mask,
|
attention_mask=causal_mask,
|
||||||
position_ids=position_ids,
|
position_ids=position_ids,
|
||||||
head_mask=head_mask[i],
|
head_mask=head_mask[i],
|
||||||
use_cache=use_cache,
|
use_cache=use_cache,
|
||||||
output_attentions=output_attentions,
|
output_attentions=output_attentions,
|
||||||
alibi=alibi,
|
alibi=alibi,
|
||||||
|
cache_position=cache_position,
|
||||||
|
position_embeddings=position_embeddings,
|
||||||
)
|
)
|
||||||
|
|
||||||
hidden_states = outputs[0]
|
hidden_states = outputs[0]
|
||||||
if use_cache is True:
|
if use_cache is True:
|
||||||
presents = presents + (outputs[1],)
|
outputs[1]
|
||||||
|
|
||||||
if output_attentions:
|
if output_attentions:
|
||||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||||
@ -365,6 +335,7 @@ class FalconPipelineForwards:
|
|||||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
if stage_manager.is_last_stage():
|
if stage_manager.is_last_stage():
|
||||||
|
|
||||||
if not return_dict:
|
if not return_dict:
|
||||||
return tuple(
|
return tuple(
|
||||||
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None
|
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None
|
||||||
|
Loading…
Reference in New Issue
Block a user