mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 01:06:00 +00:00
[kernel] Support New KCache Layout - Triton Kernel (#5677)
* kvmemcpy triton for new kcache layout * revise tests for new kcache layout * naive triton flash decoding - new kcache layout * rotary triton kernel - new kcache layout * remove redundancy - triton decoding * remove redundancy - triton kvcache copy * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -6,6 +6,7 @@ from tests.test_infer.test_ops.triton.kernel_utils import (
|
||||
convert_kv_unpad_to_padded,
|
||||
create_attention_mask,
|
||||
generate_caches_and_block_tables_v2,
|
||||
generate_caches_and_block_tables_v3,
|
||||
torch_attn_ref,
|
||||
)
|
||||
from tests.test_infer.test_ops.triton.test_decoding_attn import prepare_data
|
||||
@@ -29,9 +30,9 @@ configs = [
|
||||
x_vals=[2**i for i in range(8, 14)],
|
||||
# x_vals=[x for x in range(256, 8192, 256)],
|
||||
line_arg="provider",
|
||||
line_vals=["torch", "triton"],
|
||||
line_names=["Torch", "Triton"],
|
||||
styles=[("red", "-"), ("blue", "-")],
|
||||
line_vals=["torch", "triton", "triton_new_kcache_layout"],
|
||||
line_names=["Torch", "Triton", "Triton New KCache Layout"],
|
||||
styles=[("red", "-"), ("blue", "-"), ("yellow", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"decoding-block_size-{BLOCK_SIZE}-batch{BATCH}",
|
||||
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
|
||||
@@ -62,6 +63,14 @@ def bench_kernel(
|
||||
bsz, num_attn_heads, num_kv_heads, HEAD_DIM, same_context_len, Q_LEN, max_seq_len, dtype, device
|
||||
)
|
||||
max_seq_len_in_b = kv_lengths.max().item() # for random lengths
|
||||
# the maximum block length splitted on kv should be the kv cache block size
|
||||
kv_max_split_num = (max_seq_len_in_b + block_size - 1) // block_size
|
||||
sm_scale = 1.0 / (HEAD_DIM**0.5)
|
||||
output = torch.empty((bsz, num_attn_heads, HEAD_DIM), dtype=dtype, device=device)
|
||||
mid_output = torch.empty(
|
||||
size=(bsz, num_attn_heads, kv_max_split_num, HEAD_DIM), dtype=torch.float32, device=q.device
|
||||
)
|
||||
mid_output_lse = torch.empty(size=(bsz, num_attn_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
if provider == "torch":
|
||||
@@ -81,19 +90,11 @@ def bench_kernel(
|
||||
HEAD_DIM,
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
||||
if provider == "triton":
|
||||
elif provider == "triton":
|
||||
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
|
||||
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
|
||||
)
|
||||
block_tables = block_tables.to(device=device)
|
||||
# the maximum block length splitted on kv should be the kv cache block size
|
||||
kv_max_split_num = (max_seq_len_in_b + block_size - 1) // block_size
|
||||
output = torch.empty((bsz, num_attn_heads, HEAD_DIM), dtype=dtype, device=device)
|
||||
mid_output = torch.empty(
|
||||
size=(bsz, num_attn_heads, kv_max_split_num, HEAD_DIM), dtype=torch.float32, device=q.device
|
||||
)
|
||||
mid_output_lse = torch.empty(size=(bsz, num_attn_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
|
||||
sm_scale = 1.0 / (HEAD_DIM**0.5)
|
||||
fn = lambda: flash_decoding_attention(
|
||||
# Here we use q.squeeze(2) because we hide the q_len dimension (which is equivalent to 1),
|
||||
# refer to attention forward in modeling.
|
||||
@@ -111,6 +112,29 @@ def bench_kernel(
|
||||
kv_group_num=kv_group_num,
|
||||
) # [bsz, 1, num_heads, head_dim]
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
||||
elif provider == "triton_new_kcache_layout":
|
||||
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v3(
|
||||
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
|
||||
)
|
||||
block_tables = block_tables.to(device=device)
|
||||
fn = lambda: flash_decoding_attention(
|
||||
# Here we use q.squeeze(2) because we hide the q_len dimension (which is equivalent to 1),
|
||||
# refer to attention forward in modeling.
|
||||
q.squeeze(2),
|
||||
k_cache,
|
||||
v_cache,
|
||||
kv_lengths,
|
||||
block_tables,
|
||||
block_size,
|
||||
max_seq_len_in_b,
|
||||
output,
|
||||
mid_output,
|
||||
mid_output_lse,
|
||||
sm_scale=sm_scale,
|
||||
kv_group_num=kv_group_num,
|
||||
use_new_kcache_layout=True,
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
||||
|
||||
return ms, min_ms, max_ms
|
||||
|
||||
|
@@ -24,18 +24,20 @@ configs = [
|
||||
x_vals=[2**i for i in range(4, 11)],
|
||||
line_arg="provider",
|
||||
line_vals=[
|
||||
"no_fused_triton_rotary_emb_func",
|
||||
"fused_triton_rotary_emb_func",
|
||||
"no_fused_cuda_rotary_emb_func",
|
||||
"fused_cuda_rotary_emb_func",
|
||||
"triton_rotary_emb_func",
|
||||
"triton_fused_rotary_emb_func",
|
||||
"triton_fused_rotary_emb_func_new_kcache_layout",
|
||||
"cuda_rotary_emb_func",
|
||||
"cuda_fused_rotary_emb_func",
|
||||
],
|
||||
line_names=[
|
||||
"no_fused_triton_rotary_emb_func",
|
||||
"fused_triton_rotary_emb_func",
|
||||
"no_fused_cuda_rotary_emb_func",
|
||||
"fused_cuda_rotary_emb_func",
|
||||
"triton_rotary_emb_func",
|
||||
"triton_fused_rotary_emb_func",
|
||||
"triton_fused_rotary_emb_func(new layout)",
|
||||
"cuda_rotary_emb_func",
|
||||
"cuda_fused_rotary_emb_func",
|
||||
],
|
||||
styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")],
|
||||
styles=[("red", "-"), ("blue", "-"), ("purple", "-"), ("green", "-"), ("yellow", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"rotary_emb-batch-{BATCH}",
|
||||
args={"num_kv_heads": 16},
|
||||
@@ -91,31 +93,44 @@ def benchmark_rotary_emb(
|
||||
kv_seq_lengths = past_kv_seq_lengths + 1
|
||||
block_tables = block_tables.to(device="cuda")
|
||||
|
||||
if provider == "no_fused_triton_rotary_emb_func":
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
if provider == "triton_rotary_emb_func":
|
||||
fn = lambda: [
|
||||
rotary_embedding(new_q, new_k, cos, sin),
|
||||
copy_kv_to_blocked_cache(
|
||||
new_k, new_v, k_cache, v_cache, kv_lengths=kv_seq_lengths, block_tables=block_tables
|
||||
),
|
||||
]
|
||||
elif provider == "fused_triton_rotary_emb_func":
|
||||
elif provider == "triton_fused_rotary_emb_func":
|
||||
fn = lambda: decoding_fused_rotary_embedding(
|
||||
new_q, new_k, new_v, cos, sin, k_cache, v_cache, block_tables, kv_seq_lengths
|
||||
)
|
||||
elif provider == "no_fused_cuda_rotary_emb_func":
|
||||
elif provider == "triton_fused_rotary_emb_func_new_kcache_layout":
|
||||
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
||||
kcache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, head_dim // x, block_size, x)
|
||||
k_cache = torch.zeros(size=kcache_shape, dtype=dtype, device="cuda")
|
||||
block_tables = mock_alloc_block_table_and_kvcache_v3(
|
||||
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
|
||||
)
|
||||
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
|
||||
block_tables = block_tables.to(device="cuda")
|
||||
fn = lambda: decoding_fused_rotary_embedding(
|
||||
new_q, new_k, new_v, cos, sin, k_cache, v_cache, block_tables, kv_seq_lengths, use_new_kcache_layout=True
|
||||
)
|
||||
elif provider == "cuda_rotary_emb_func":
|
||||
fn = lambda: [
|
||||
inference_ops.rotary_embedding(new_q, new_k, cos, sin, True),
|
||||
inference_ops.decode_kv_cache_memcpy(new_k, new_v, new_k_cache, v_cache, kv_seq_lengths, block_tables),
|
||||
]
|
||||
elif provider == "fused_cuda_rotary_emb_func":
|
||||
elif provider == "cuda_fused_rotary_emb_func":
|
||||
fn = lambda: inference_ops.rotary_embedding_and_cache_copy(
|
||||
new_q, new_k, new_v, cos, sin, new_k_cache, v_cache, kv_seq_lengths, block_tables, True
|
||||
)
|
||||
else:
|
||||
raise ValueError("Undefined provider")
|
||||
|
||||
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
||||
return ms
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep, quantiles=quantiles)
|
||||
return ms, min_ms, max_ms
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@@ -14,7 +14,7 @@ except ImportError:
|
||||
|
||||
inference_ops = InferenceOpsLoader().load()
|
||||
|
||||
HEAD_DIM = 4
|
||||
HEAD_DIM = 128
|
||||
BATCH = 16
|
||||
BLOCK_SIZE = 32
|
||||
SAME_LEN = True
|
||||
@@ -25,9 +25,9 @@ configs = [
|
||||
x_names=["KV_SEQ_LEN"],
|
||||
x_vals=[2**i for i in range(8, 13)],
|
||||
line_arg="provider",
|
||||
line_vals=["torch_copy_func", "triton_copy_func", "cuda_copy_func"],
|
||||
line_names=["torch_copy_func", "triton_copy_func", "cuda_copy_func"],
|
||||
styles=[("red", "-"), ("blue", "-"), ("green", "-")],
|
||||
line_vals=["torch_copy_func", "triton_copy_func", "triton_new_kcache_layout", "cuda_copy_func"],
|
||||
line_names=["torch_copy_func", "triton_copy_func", "triton_new_kcache_layout", "cuda_copy_func"],
|
||||
styles=[("red", "-"), ("blue", "-"), ("yellow", "-"), ("green", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"kvcache_copy_decoding_stage-batch-{BATCH}",
|
||||
args={"bsz": BATCH, "block_size": 16, "max_seq_len": 8192, "num_kv_heads": 16, "same_context_len": True},
|
||||
@@ -45,7 +45,7 @@ def benchmark_kvcache_copy(
|
||||
num_kv_heads: int,
|
||||
same_context_len: bool,
|
||||
):
|
||||
dtype = torch.float32
|
||||
dtype = torch.float16
|
||||
device = get_current_device()
|
||||
|
||||
assert KV_SEQ_LEN <= max_seq_len, "Assigned maximum kv length must be smaller or equal to maximum seq len"
|
||||
@@ -63,11 +63,18 @@ def benchmark_kvcache_copy(
|
||||
)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
# TODO copy_to_cache needs to support copying both k and v at the same time in the future.
|
||||
if provider == "torch_copy_func":
|
||||
fn = lambda: copy_to_cache(new_k, k_cache, lengths=context_lengths, block_tables=block_tables, type="decoding")
|
||||
elif provider == "triton_copy_func":
|
||||
fn = lambda: copy_kv_to_blocked_cache(new_k, new_v, k_cache, v_cache, context_lengths, block_tables)
|
||||
elif provider == "triton_new_kcache_layout":
|
||||
# NOTE New kcache layout (num_blocks, num_kv_heads, head_dim // x, block_size, x) to be applied
|
||||
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
||||
k_cache_shape = (bsz * max_seq_len // block_size, num_kv_heads, HEAD_DIM // x, block_size, x)
|
||||
k_cache = torch.zeros(size=k_cache_shape, dtype=dtype, device=device) # update k_cache layout
|
||||
fn = lambda: copy_kv_to_blocked_cache(
|
||||
new_k, new_v, k_cache, v_cache, context_lengths, block_tables, use_new_kcache_layout=True
|
||||
)
|
||||
elif provider == "cuda_copy_func":
|
||||
_, _, k_cache, _, _, _, _, _, _ = prepare_data_new_kcache_layout(
|
||||
bsz, num_kv_heads, block_size, max_seq_len // block_size, context_lengths - 1, device, dtype
|
||||
|
Reference in New Issue
Block a user