mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-12 20:54:35 +00:00
[kernel] Support New KCache Layout - Triton Kernel (#5677)
* kvmemcpy triton for new kcache layout * revise tests for new kcache layout * naive triton flash decoding - new kcache layout * rotary triton kernel - new kcache layout * remove redundancy - triton decoding * remove redundancy - triton kvcache copy * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -24,18 +24,20 @@ configs = [
|
||||
x_vals=[2**i for i in range(4, 11)],
|
||||
line_arg="provider",
|
||||
line_vals=[
|
||||
"no_fused_triton_rotary_emb_func",
|
||||
"fused_triton_rotary_emb_func",
|
||||
"no_fused_cuda_rotary_emb_func",
|
||||
"fused_cuda_rotary_emb_func",
|
||||
"triton_rotary_emb_func",
|
||||
"triton_fused_rotary_emb_func",
|
||||
"triton_fused_rotary_emb_func_new_kcache_layout",
|
||||
"cuda_rotary_emb_func",
|
||||
"cuda_fused_rotary_emb_func",
|
||||
],
|
||||
line_names=[
|
||||
"no_fused_triton_rotary_emb_func",
|
||||
"fused_triton_rotary_emb_func",
|
||||
"no_fused_cuda_rotary_emb_func",
|
||||
"fused_cuda_rotary_emb_func",
|
||||
"triton_rotary_emb_func",
|
||||
"triton_fused_rotary_emb_func",
|
||||
"triton_fused_rotary_emb_func(new layout)",
|
||||
"cuda_rotary_emb_func",
|
||||
"cuda_fused_rotary_emb_func",
|
||||
],
|
||||
styles=[("red", "-"), ("blue", "-"), ("green", "-"), ("yellow", "-")],
|
||||
styles=[("red", "-"), ("blue", "-"), ("purple", "-"), ("green", "-"), ("yellow", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"rotary_emb-batch-{BATCH}",
|
||||
args={"num_kv_heads": 16},
|
||||
@@ -91,31 +93,44 @@ def benchmark_rotary_emb(
|
||||
kv_seq_lengths = past_kv_seq_lengths + 1
|
||||
block_tables = block_tables.to(device="cuda")
|
||||
|
||||
if provider == "no_fused_triton_rotary_emb_func":
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
if provider == "triton_rotary_emb_func":
|
||||
fn = lambda: [
|
||||
rotary_embedding(new_q, new_k, cos, sin),
|
||||
copy_kv_to_blocked_cache(
|
||||
new_k, new_v, k_cache, v_cache, kv_lengths=kv_seq_lengths, block_tables=block_tables
|
||||
),
|
||||
]
|
||||
elif provider == "fused_triton_rotary_emb_func":
|
||||
elif provider == "triton_fused_rotary_emb_func":
|
||||
fn = lambda: decoding_fused_rotary_embedding(
|
||||
new_q, new_k, new_v, cos, sin, k_cache, v_cache, block_tables, kv_seq_lengths
|
||||
)
|
||||
elif provider == "no_fused_cuda_rotary_emb_func":
|
||||
elif provider == "triton_fused_rotary_emb_func_new_kcache_layout":
|
||||
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
||||
kcache_shape = (BATCH_SIZE * max_num_blocks_per_seq, num_kv_heads, head_dim // x, block_size, x)
|
||||
k_cache = torch.zeros(size=kcache_shape, dtype=dtype, device="cuda")
|
||||
block_tables = mock_alloc_block_table_and_kvcache_v3(
|
||||
k, v, k_cache, v_cache, past_kv_seq_lengths, BATCH_SIZE, max_num_blocks_per_seq, block_size
|
||||
)
|
||||
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
|
||||
block_tables = block_tables.to(device="cuda")
|
||||
fn = lambda: decoding_fused_rotary_embedding(
|
||||
new_q, new_k, new_v, cos, sin, k_cache, v_cache, block_tables, kv_seq_lengths, use_new_kcache_layout=True
|
||||
)
|
||||
elif provider == "cuda_rotary_emb_func":
|
||||
fn = lambda: [
|
||||
inference_ops.rotary_embedding(new_q, new_k, cos, sin, True),
|
||||
inference_ops.decode_kv_cache_memcpy(new_k, new_v, new_k_cache, v_cache, kv_seq_lengths, block_tables),
|
||||
]
|
||||
elif provider == "fused_cuda_rotary_emb_func":
|
||||
elif provider == "cuda_fused_rotary_emb_func":
|
||||
fn = lambda: inference_ops.rotary_embedding_and_cache_copy(
|
||||
new_q, new_k, new_v, cos, sin, new_k_cache, v_cache, kv_seq_lengths, block_tables, True
|
||||
)
|
||||
else:
|
||||
raise ValueError("Undefined provider")
|
||||
|
||||
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
||||
return ms
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep, quantiles=quantiles)
|
||||
return ms, min_ms, max_ms
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Reference in New Issue
Block a user