[utils] correct cpu memory used and capacity in the context of multi-process (#726)

This commit is contained in:
Jiarui Fang
2022-04-12 14:57:54 +08:00
committed by GitHub
parent 7db3ccc79b
commit 53cb584808
17 changed files with 52 additions and 20 deletions

View File

@@ -8,6 +8,7 @@ from colossalai.utils import get_current_device
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
from colossalai.logging import get_dist_logger
from packaging import version
_GLOBAL_CUDA_MEM_FRACTION = 1.0
@@ -106,7 +107,8 @@ def colo_device_memory_capacity(device: torch.device) -> int:
assert isinstance(device, torch.device)
if device.type == 'cpu':
mem_info = _get_cpu_memory_info()
return mem_info.info.total / gpc.get_world_size(ParallelMode.DATA)
# In the context of 1-CPU-N-GPU, the memory capacity of the current process is 1/N overall CPU memory.
return mem_info.total / gpc.num_processes_on_current_node
if device.type == 'cuda':
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION
@@ -123,8 +125,9 @@ def colo_device_memory_used(device: torch.device) -> int:
"""
if device.type == 'cpu':
mem_info = _get_cpu_memory_info()
# FIXME(jiaruifang) we need get how many processes are using the CPU memory.
ret = mem_info.used / gpc.get_world_size(ParallelMode.DATA)
# In the context of 1-CPU-N-GPU, the memory usage of the current process is 1/N CPU memory used.
# Each process consumes the same amount of memory.
ret = mem_info.used / gpc.num_processes_on_current_node
return ret
elif device.type == 'cuda':
ret: int = torch.cuda.memory_allocated(device)
@@ -142,6 +145,10 @@ def colo_set_process_memory_fraction(ratio: float) -> None:
Args:
ratio (float): a ratio between 0. ~ 1.
"""
if version.parse(torch.__version__) < version.parse('1.8'):
logger = get_dist_logger('colo_set_process_memory_fraction')
logger.warning('colo_set_process_memory_fraction failed because torch version is less than 1.8')
return
global _GLOBAL_CUDA_MEM_FRACTION
_GLOBAL_CUDA_MEM_FRACTION = ratio
torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_current_device())