mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 10:06:44 +00:00
[legacy] move communication and nn to legacy and refactor logger (#4671)
* [legacy] move communication to legacy (#4640) * [legacy] refactor logger and clean up legacy codes (#4654) * [legacy] make logger independent to gpc * [legacy] make optim independent to registry * [legacy] move test engine to legacy * [legacy] move nn to legacy (#4656) * [legacy] move nn to legacy * [checkpointio] fix save hf config * [test] remove useledd rpc pp test * [legacy] fix nn init * [example] skip tutorial hybriad parallel example * [devops] test doc check * [devops] test doc check
This commit is contained in:
141
colossalai/legacy/nn/layer/colossalai_layer/linear.py
Normal file
141
colossalai/legacy/nn/layer/colossalai_layer/linear.py
Normal file
@@ -0,0 +1,141 @@
|
||||
import inspect
|
||||
import math
|
||||
from typing import Callable
|
||||
|
||||
from torch import dtype, nn
|
||||
|
||||
from colossalai.nn import init
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
from ..parallel_1d import *
|
||||
from ..parallel_2d import *
|
||||
from ..parallel_2p5d import *
|
||||
from ..parallel_3d import *
|
||||
from ..utils import get_tensor_parallel_mode
|
||||
from ..vanilla import *
|
||||
from ._utils import ColossalaiModule
|
||||
|
||||
_parallel_linear = {None: VanillaLinear, '1d': Linear1D, '2d': Linear2D, '2.5d': Linear2p5D, '3d': Linear3D}
|
||||
|
||||
_parallel_classifier = {
|
||||
None: VanillaClassifier,
|
||||
'1d': Classifier1D,
|
||||
'2d': Classifier2D,
|
||||
'2.5d': Classifier2p5D,
|
||||
'3d': Classifier3D
|
||||
}
|
||||
|
||||
_vocab_parallel_classifier = {
|
||||
'1d': VocabParallelClassifier1D,
|
||||
'2d': VocabParallelClassifier2D,
|
||||
'2.5d': VocabParallelClassifier2p5D,
|
||||
'3d': VocabParallelClassifier3D
|
||||
}
|
||||
|
||||
|
||||
class Linear(ColossalaiModule):
|
||||
"""Linear layer of colossalai.
|
||||
|
||||
Args:
|
||||
in_features (int): size of each input sample.
|
||||
out_features (int): size of each output sample.
|
||||
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
||||
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
||||
weight_initializer (:class:`typing.Callable`, optional):
|
||||
The initializer of weight, defaults to kaiming uniform initializer.
|
||||
bias_initializer (:class:`typing.Callable`, optional):
|
||||
The initializer of bias, defaults to xavier uniform initializer.
|
||||
|
||||
Note: ``kwargs`` would contain different parameters when you use different parallelisms.
|
||||
|
||||
The ``kwargs`` should contain parameters below:
|
||||
::
|
||||
|
||||
Linear1D:
|
||||
gather_output: bool (optional, default to be false)
|
||||
skip_bias_add: bool (optional, default to be false)
|
||||
Linear2D:
|
||||
skip_bias_add: bool (optional, default to be false)
|
||||
Linear2p5D:
|
||||
skip_bias_add: bool (optional, default to be false)
|
||||
Linear3D:
|
||||
None
|
||||
|
||||
More details about ``initializer`` please refer to
|
||||
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
dtype: dtype = None,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
**kwargs) -> None:
|
||||
tensor_parallel = get_tensor_parallel_mode()
|
||||
linear_cls = _parallel_linear[tensor_parallel]
|
||||
gather_output = kwargs.pop('gather_output', None)
|
||||
if 'gather_output' in inspect.signature(linear_cls.__init__).parameters.keys(): # gather_out arg is available
|
||||
kwargs['gather_output'] = gather_output
|
||||
layer = linear_cls(
|
||||
in_features,
|
||||
out_features,
|
||||
bias=bias,
|
||||
dtype=dtype,
|
||||
weight_initializer=weight_initializer,
|
||||
bias_initializer=bias_initializer,
|
||||
**kwargs,
|
||||
)
|
||||
super().__init__(layer)
|
||||
|
||||
|
||||
class Classifier(ColossalaiModule):
|
||||
"""Classifier layer of colossalai.
|
||||
|
||||
Args:
|
||||
in_features (int): size of each input sample.
|
||||
num_classes (int): number of classes.
|
||||
weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None.
|
||||
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
|
||||
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
||||
weight_initializer (:class:`typing.Callable`, optional):
|
||||
The initializer of weight, defaults to kaiming uniform initializer.
|
||||
bias_initializer (:class:`typing.Callable`, optional):
|
||||
The initializer of bias, defaults to xavier uniform initializer.
|
||||
|
||||
More details about ``initializer`` please refer to
|
||||
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_features: int,
|
||||
num_classes: int,
|
||||
weight: nn.Parameter = None,
|
||||
bias: bool = True,
|
||||
dtype: dtype = None,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
vocab_parallel_limit: int = 2048) -> None:
|
||||
tensor_parallel = get_tensor_parallel_mode()
|
||||
if num_classes <= vocab_parallel_limit or tensor_parallel is None:
|
||||
layer = _parallel_classifier[tensor_parallel](
|
||||
in_features,
|
||||
num_classes,
|
||||
weight=weight,
|
||||
bias=bias,
|
||||
dtype=dtype,
|
||||
weight_initializer=weight_initializer,
|
||||
bias_initializer=bias_initializer,
|
||||
)
|
||||
else:
|
||||
layer = _vocab_parallel_classifier[tensor_parallel](
|
||||
in_features,
|
||||
num_classes,
|
||||
weight=weight,
|
||||
bias=bias,
|
||||
dtype=dtype,
|
||||
weight_initializer=weight_initializer,
|
||||
bias_initializer=bias_initializer,
|
||||
)
|
||||
super().__init__(layer)
|
Reference in New Issue
Block a user