mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 18:19:58 +00:00
[legacy] move communication and nn to legacy and refactor logger (#4671)
* [legacy] move communication to legacy (#4640) * [legacy] refactor logger and clean up legacy codes (#4654) * [legacy] make logger independent to gpc * [legacy] make optim independent to registry * [legacy] move test engine to legacy * [legacy] move nn to legacy (#4656) * [legacy] move nn to legacy * [checkpointio] fix save hf config * [test] remove useledd rpc pp test * [legacy] fix nn init * [example] skip tutorial hybriad parallel example * [devops] test doc check * [devops] test doc check
This commit is contained in:
42
colossalai/legacy/nn/layer/colossalai_layer/normalization.py
Normal file
42
colossalai/legacy/nn/layer/colossalai_layer/normalization.py
Normal file
@@ -0,0 +1,42 @@
|
||||
from torch import nn
|
||||
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
from ..parallel_1d import LayerNorm1D
|
||||
from ..parallel_2d import LayerNorm2D
|
||||
from ..parallel_2p5d import LayerNorm2p5D
|
||||
from ..parallel_3d import LayerNorm3D
|
||||
from ..utils import get_tensor_parallel_mode
|
||||
from ..vanilla import VanillaLayerNorm
|
||||
from ._utils import ColossalaiModule
|
||||
|
||||
_parallel_layernorm = {
|
||||
None: VanillaLayerNorm,
|
||||
"1d": LayerNorm1D,
|
||||
"2d": LayerNorm2D,
|
||||
"2.5d": LayerNorm2p5D,
|
||||
"3d": LayerNorm3D,
|
||||
}
|
||||
|
||||
|
||||
class LayerNorm(ColossalaiModule):
|
||||
r"""Layer Normalization for colossalai.
|
||||
|
||||
Args:
|
||||
normalized_shape (int): input shape from an expected input of size.
|
||||
:math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1]
|
||||
\times \ldots \times \text{normalized_shape}[-1]]`
|
||||
If a single integer is used, it is treated as a singleton list, and this module will
|
||||
normalize over the last dimension which is expected to be of that specific size.
|
||||
eps (float): a value added to the denominator for numerical stability, defaults to 1e-05.
|
||||
bias (bool, optional): Whether to add a bias, defaults to ``True``.
|
||||
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(self, normalized_shape: int, eps=1e-05, bias=True, dtype=None) -> None:
|
||||
tensor_parallel = get_tensor_parallel_mode()
|
||||
if tensor_parallel is None:
|
||||
norm = nn.LayerNorm(normalized_shape, eps=eps).to(dtype).to(get_current_device())
|
||||
else:
|
||||
norm = _parallel_layernorm[tensor_parallel](normalized_shape, eps=eps, dtype=dtype)
|
||||
super().__init__(norm)
|
Reference in New Issue
Block a user