mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-12 20:54:35 +00:00
[legacy] move communication and nn to legacy and refactor logger (#4671)
* [legacy] move communication to legacy (#4640) * [legacy] refactor logger and clean up legacy codes (#4654) * [legacy] make logger independent to gpc * [legacy] make optim independent to registry * [legacy] move test engine to legacy * [legacy] move nn to legacy (#4656) * [legacy] move nn to legacy * [checkpointio] fix save hf config * [test] remove useledd rpc pp test * [legacy] fix nn init * [example] skip tutorial hybriad parallel example * [devops] test doc check * [devops] test doc check
This commit is contained in:
17
colossalai/legacy/nn/layer/parallel_1d/__init__.py
Normal file
17
colossalai/legacy/nn/layer/parallel_1d/__init__.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from .layers import (
|
||||
Classifier1D,
|
||||
Dropout1D,
|
||||
Embedding1D,
|
||||
LayerNorm1D,
|
||||
Linear1D,
|
||||
Linear1D_Col,
|
||||
Linear1D_Row,
|
||||
PatchEmbedding1D,
|
||||
VocabParallelClassifier1D,
|
||||
VocabParallelEmbedding1D,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'Linear1D', 'Linear1D_Col', 'Linear1D_Row', 'Embedding1D', 'Dropout1D', 'Classifier1D', 'VocabParallelClassifier1D',
|
||||
'VocabParallelEmbedding1D', 'LayerNorm1D', 'PatchEmbedding1D'
|
||||
]
|
97
colossalai/legacy/nn/layer/parallel_1d/_operation.py
Normal file
97
colossalai/legacy/nn/layer/parallel_1d/_operation.py
Normal file
@@ -0,0 +1,97 @@
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
try:
|
||||
import fused_mix_prec_layer_norm_cuda
|
||||
except:
|
||||
fused_mix_prec_layer_norm_cuda = None
|
||||
|
||||
|
||||
class FusedLayerNormAffineFunction1D(torch.autograd.Function):
|
||||
r"""Layernorm
|
||||
|
||||
Args:
|
||||
input: input matrix.
|
||||
weight: weight matrix.
|
||||
bias: bias matrix.
|
||||
normalized_shape: input shape from an expected input of size.
|
||||
:math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]`
|
||||
If a single integer is used, it is treated as a singleton list, and this module will
|
||||
normalize over the last dimension which is expected to be of that specific size.
|
||||
eps: a value added to the denominator for numerical stability
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input, weight, bias, normalized_shape, eps):
|
||||
ctx.normalized_shape = normalized_shape
|
||||
ctx.eps = eps
|
||||
input_ = input.contiguous()
|
||||
weight_ = weight.contiguous()
|
||||
bias_ = bias.contiguous()
|
||||
output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(input_, ctx.normalized_shape, weight_,
|
||||
bias_, ctx.eps)
|
||||
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
|
||||
grad_input = grad_weight = grad_bias = None
|
||||
grad_input, grad_weight, grad_bias \
|
||||
= fused_mix_prec_layer_norm_cuda.backward_affine(
|
||||
grad_output.contiguous(), mean, invvar,
|
||||
input_, ctx.normalized_shape,
|
||||
weight_, bias_, ctx.eps)
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None
|
||||
|
||||
|
||||
class LinearWithAsyncCommunication(torch.autograd.Function):
|
||||
"""
|
||||
Linear layer execution with asynchronous communication in backprop.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, weight, bias, parallel_mode, async_grad_allreduce):
|
||||
ctx.save_for_backward(input_, weight)
|
||||
ctx.use_bias = bias is not None
|
||||
ctx.parallel_mode = parallel_mode
|
||||
ctx.async_grad_allreduce = async_grad_allreduce
|
||||
|
||||
output = torch.matmul(input_, weight.t())
|
||||
if bias is not None:
|
||||
output = output + bias
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
input, weight = ctx.saved_tensors
|
||||
use_bias = ctx.use_bias
|
||||
|
||||
total_input = input
|
||||
grad_input = grad_output.matmul(weight)
|
||||
|
||||
# Convert the tensor shapes to 2D for execution compatibility
|
||||
grad_output = grad_output.view(grad_output.shape[0] * grad_output.shape[1], grad_output.shape[2])
|
||||
total_input = total_input.view(total_input.shape[0] * total_input.shape[1], total_input.shape[2])
|
||||
|
||||
if ctx.async_grad_allreduce:
|
||||
# Asynchronous all-reduce
|
||||
handle = dist.all_reduce(grad_input, group=gpc.get_group(ctx.parallel_mode), async_op=True)
|
||||
# Delay the start of weight gradient computation shortly (3us) to have
|
||||
# all-reduce scheduled first and have GPU resources allocated
|
||||
_ = torch.empty(1, device=grad_output.device) + 1
|
||||
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
if ctx.async_grad_allreduce:
|
||||
handle.wait()
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None, None
|
||||
|
||||
|
||||
def linear_with_async_comm(input_, weight, bias, parallel_mode, async_grad_allreduce):
|
||||
return LinearWithAsyncCommunication.apply(input_, weight, bias, parallel_mode, async_grad_allreduce)
|
187
colossalai/legacy/nn/layer/parallel_1d/_utils.py
Normal file
187
colossalai/legacy/nn/layer/parallel_1d/_utils.py
Normal file
@@ -0,0 +1,187 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.global_variables import tensor_parallel_env as env
|
||||
|
||||
from ..utils import divide
|
||||
|
||||
|
||||
def set_parallel_input(input_parallel: bool):
|
||||
env.parallel_input_1d = input_parallel
|
||||
|
||||
|
||||
def get_parallel_input():
|
||||
return env.parallel_input_1d
|
||||
|
||||
|
||||
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank):
|
||||
index_f = rank * per_partition_vocab_size
|
||||
index_l = index_f + per_partition_vocab_size
|
||||
return index_f, index_l
|
||||
|
||||
|
||||
def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
|
||||
per_partition_vocab_size = divide(global_vocab_size, world_size)
|
||||
return vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank)
|
||||
|
||||
|
||||
def _reduce(input_, parallel_mode):
|
||||
# skip if only one rank involved
|
||||
if gpc.get_world_size(parallel_mode) == 1:
|
||||
return input_
|
||||
group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode)
|
||||
dist.all_reduce(input_, group=group)
|
||||
|
||||
return input_
|
||||
|
||||
|
||||
def _split(input_, parallel_mode, dim=-1):
|
||||
# skip if only one rank involved
|
||||
world_size = gpc.get_world_size(parallel_mode)
|
||||
if world_size == 1:
|
||||
return input_
|
||||
|
||||
# Split along last dimension.
|
||||
dim_size = input_.size(dim)
|
||||
assert dim_size % world_size == 0, \
|
||||
f'The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), ' \
|
||||
f'cannot split tensor evenly'
|
||||
|
||||
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
|
||||
rank = gpc.get_local_rank(parallel_mode)
|
||||
output = tensor_list[rank].contiguous()
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def _gather(input_, parallel_mode, dim=-1):
|
||||
# skip if only one rank involved
|
||||
world_size = gpc.get_world_size(parallel_mode)
|
||||
if world_size == 1:
|
||||
return input_
|
||||
|
||||
# all gather
|
||||
rank = gpc.get_local_rank(parallel_mode)
|
||||
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
||||
tensor_list[rank] = input_
|
||||
group = gpc.get_cpu_group(parallel_mode) if input_.device.type == "cpu" else gpc.get_group(parallel_mode)
|
||||
torch.distributed.all_gather(tensor_list, input_, group=group)
|
||||
|
||||
# concat
|
||||
output = torch.cat(tensor_list, dim=dim).contiguous()
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class _ReduceGrad(torch.autograd.Function):
|
||||
"""
|
||||
Pass the input to the model parallel region.
|
||||
|
||||
Args:
|
||||
input_: input matrix.
|
||||
parallel_mode: parallel mode.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(graph, input_):
|
||||
return input_
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, parallel_mode):
|
||||
ctx.mode = parallel_mode
|
||||
return input_
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return _reduce(grad_output, ctx.mode), None
|
||||
|
||||
|
||||
class _ReduceInput(torch.autograd.Function):
|
||||
"""
|
||||
All-reduce the input from the model parallel region.
|
||||
|
||||
Args:
|
||||
input_: input matrix.
|
||||
parallel_mode: parallel mode.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(graph, input_):
|
||||
return _reduce(input_)
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, parallel_mode):
|
||||
return _reduce(input_, parallel_mode)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return grad_output, None
|
||||
|
||||
|
||||
class _SplitForwardGatherBackward(torch.autograd.Function):
|
||||
"""
|
||||
Split the input and keep only the corresponding chuck to the rank.
|
||||
|
||||
Args:
|
||||
input_: input matrix.
|
||||
parallel_mode: parallel mode.
|
||||
dim: dimension
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(graph, input_):
|
||||
return _split(input_)
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, parallel_mode, dim):
|
||||
ctx.mode = parallel_mode
|
||||
ctx.dim = dim
|
||||
return _split(input_, parallel_mode, dim)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return _gather(grad_output, ctx.mode, ctx.dim), None, None
|
||||
|
||||
|
||||
class _GatherForwardSplitBackward(torch.autograd.Function):
|
||||
"""Gather the input from model parallel region and concatenate.
|
||||
|
||||
Args:
|
||||
input_: input matrix.
|
||||
parallel_mode: parallel mode.
|
||||
dim: dimension
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def symbolic(graph, input_):
|
||||
return _gather(input_)
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, parallel_mode, dim):
|
||||
ctx.mode = parallel_mode
|
||||
ctx.dim = dim
|
||||
return _gather(input_, parallel_mode, dim)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return _split(grad_output, ctx.mode, ctx.dim), None, None
|
||||
|
||||
|
||||
def reduce_grad(input_, parallel_mode):
|
||||
return _ReduceGrad.apply(input_, parallel_mode)
|
||||
|
||||
|
||||
def reduce_input(input_, parallel_mode):
|
||||
return _ReduceInput.apply(input_, parallel_mode)
|
||||
|
||||
|
||||
def split_forward_gather_backward(input_, parallel_mode, dim):
|
||||
return _SplitForwardGatherBackward.apply(input_, parallel_mode, dim)
|
||||
|
||||
|
||||
def gather_forward_split_backward(input_, parallel_mode, dim):
|
||||
return _GatherForwardSplitBackward.apply(input_, parallel_mode, dim)
|
1040
colossalai/legacy/nn/layer/parallel_1d/layers.py
Normal file
1040
colossalai/legacy/nn/layer/parallel_1d/layers.py
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user