mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 09:07:51 +00:00
[legacy] move communication and nn to legacy and refactor logger (#4671)
* [legacy] move communication to legacy (#4640) * [legacy] refactor logger and clean up legacy codes (#4654) * [legacy] make logger independent to gpc * [legacy] make optim independent to registry * [legacy] move test engine to legacy * [legacy] move nn to legacy (#4656) * [legacy] move nn to legacy * [checkpointio] fix save hf config * [test] remove useledd rpc pp test * [legacy] fix nn init * [example] skip tutorial hybriad parallel example * [devops] test doc check * [devops] test doc check
This commit is contained in:
99
colossalai/legacy/nn/layer/parallel_3d/_utils.py
Normal file
99
colossalai/legacy/nn/layer/parallel_3d/_utils.py
Normal file
@@ -0,0 +1,99 @@
|
||||
from collections import OrderedDict
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
from colossalai.constants import INPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_GROUP_3D, OUTPUT_X_WEIGHT_3D, WEIGHT_GROUP_3D
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.global_variables import tensor_parallel_env as env
|
||||
|
||||
|
||||
def get_depth_from_env() -> int:
|
||||
try:
|
||||
depth = env.depth_3d
|
||||
assert depth > 0, 'DEPTH must be greater than zero'
|
||||
return depth
|
||||
|
||||
except KeyError as e:
|
||||
raise EnvironmentError('DEPTH is not found in the current environment, '
|
||||
'please make sure that you have used the correct process group initializer')
|
||||
|
||||
|
||||
def get_parallel_mode_from_env(group):
|
||||
assert group in [INPUT_GROUP_3D, WEIGHT_GROUP_3D, OUTPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_X_WEIGHT_3D], \
|
||||
f'{group} is not valid for 3D tensor parallelism.'
|
||||
return getattr(env, group)
|
||||
|
||||
|
||||
def swap_in_out_group():
|
||||
env.input_group_3d, env.output_group_3d = env.output_group_3d, env.input_group_3d
|
||||
env.input_x_weight_group_3d, env.output_x_weight_group_3d = (
|
||||
env.output_x_weight_group_3d,
|
||||
env.input_x_weight_group_3d,
|
||||
)
|
||||
|
||||
|
||||
def dbg_check_shape(tensor: Tensor, shape: tuple):
|
||||
rank = gpc.get_global_rank()
|
||||
if rank == 0:
|
||||
print(tensor.shape)
|
||||
assert tensor.shape == shape, \
|
||||
'{} does not match {}'.format(tensor.shape, shape)
|
||||
|
||||
|
||||
class AsyncGradientBucket(object):
|
||||
|
||||
def __init__(self):
|
||||
self.bucket = OrderedDict()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.bucket)
|
||||
|
||||
def push(self, async_op, grad_tensor, param_id):
|
||||
self.bucket[param_id] = tuple((async_op, grad_tensor))
|
||||
return torch.zeros_like(grad_tensor, dtype=grad_tensor.dtype, device=grad_tensor.device)
|
||||
|
||||
def pop(self, param_id):
|
||||
grad = None
|
||||
if param_id in self.bucket:
|
||||
op, grad = self.bucket.pop(param_id)
|
||||
if op is not None:
|
||||
op.wait()
|
||||
return grad
|
||||
|
||||
def synchronize(self, params):
|
||||
for p in params:
|
||||
i = id(p)
|
||||
if i in self.bucket:
|
||||
op, grad = self.bucket.pop(i)
|
||||
if op is not None:
|
||||
op.wait()
|
||||
p.grad.add_(grad)
|
||||
|
||||
|
||||
_async_grad_bucket = AsyncGradientBucket()
|
||||
|
||||
|
||||
def push_async_grad(op, grad, param_id):
|
||||
return _async_grad_bucket.push(op, grad, param_id)
|
||||
|
||||
|
||||
def pop_async_grad(param_id):
|
||||
return _async_grad_bucket.pop(param_id)
|
||||
|
||||
|
||||
def _async_grad_hook(grad, param_id):
|
||||
grad.add_(pop_async_grad(param_id))
|
||||
return grad
|
||||
|
||||
|
||||
def register_async_grad_hook(param):
|
||||
param.register_hook(partial(_async_grad_hook, param_id=id(param)))
|
||||
|
||||
|
||||
def synchronize(params=list()):
|
||||
_async_grad_bucket.synchronize(params)
|
||||
torch.cuda.default_stream().synchronize()
|
||||
if len(_async_grad_bucket) > 0:
|
||||
raise RuntimeError(f"{len(_async_grad_bucket)} asynchronous gradient(s) not collected.")
|
Reference in New Issue
Block a user