mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 02:51:59 +00:00
[legacy] move communication and nn to legacy and refactor logger (#4671)
* [legacy] move communication to legacy (#4640) * [legacy] refactor logger and clean up legacy codes (#4654) * [legacy] make logger independent to gpc * [legacy] make optim independent to registry * [legacy] move test engine to legacy * [legacy] move nn to legacy (#4656) * [legacy] move nn to legacy * [checkpointio] fix save hf config * [test] remove useledd rpc pp test * [legacy] fix nn init * [example] skip tutorial hybriad parallel example * [devops] test doc check * [devops] test doc check
This commit is contained in:
4
colossalai/legacy/nn/layer/parallel_sequence/__init__.py
Normal file
4
colossalai/legacy/nn/layer/parallel_sequence/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from ._operation import RingAV, RingQK
|
||||
from .layers import TransformerSelfAttentionRing
|
||||
|
||||
__all__ = ['TransformerSelfAttentionRing', 'RingAV', 'RingQK']
|
151
colossalai/legacy/nn/layer/parallel_sequence/_operation.py
Normal file
151
colossalai/legacy/nn/layer/parallel_sequence/_operation.py
Normal file
@@ -0,0 +1,151 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from torch import distributed as dist
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.legacy.communication import ring_forward
|
||||
from colossalai.legacy.nn.layer.parallel_sequence._utils import _calc_current_device_range, _calc_incoming_device_range
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
||||
class RingQK(torch.autograd.Function):
|
||||
"""
|
||||
Calculate QK in a ring-exchange style
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, sub_q, sub_k, batch_size, num_attention_heads, sub_seq_length):
|
||||
# save tensor for backward
|
||||
ctx.save_for_backward(sub_q, sub_k)
|
||||
ctx.sub_seq_length = sub_seq_length
|
||||
|
||||
# create local segment of attention score
|
||||
attention_score = torch.empty(batch_size * num_attention_heads,
|
||||
sub_seq_length,
|
||||
sub_seq_length * gpc.get_world_size(ParallelMode.SEQUENCE),
|
||||
dtype=sub_q.dtype,
|
||||
device=get_current_device())
|
||||
|
||||
# compute local QK^T
|
||||
part_a = torch.matmul(sub_q, sub_k.transpose(2, 1))
|
||||
local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE)
|
||||
local_world_size = gpc.get_world_size(ParallelMode.SEQUENCE)
|
||||
start_idx = local_rank * sub_seq_length
|
||||
end_idx = (local_rank + 1) * sub_seq_length
|
||||
attention_score[:, :, start_idx:end_idx] = part_a
|
||||
|
||||
# compute QK^T in ring-all-reduce style
|
||||
for i in range(local_world_size - 1):
|
||||
sub_k = ring_forward(sub_k, ParallelMode.SEQUENCE)
|
||||
start_idx, end_idx = _calc_incoming_device_range(i, local_rank, local_world_size, sub_seq_length)
|
||||
part_a = torch.matmul(sub_q, sub_k.transpose(2, 1))
|
||||
attention_score[:, :, start_idx:end_idx] = part_a
|
||||
|
||||
return attention_score
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
sub_q, sub_k, = ctx.saved_tensors
|
||||
local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE)
|
||||
local_world_size = gpc.get_world_size(ParallelMode.SEQUENCE)
|
||||
|
||||
# calculate gradient of sub_k
|
||||
grad_k = torch.matmul(grad_output.transpose(2, 1), sub_q)
|
||||
|
||||
dist.all_reduce(grad_k, group=gpc.get_group(ParallelMode.SEQUENCE))
|
||||
grad_k = grad_k[:, local_rank * ctx.sub_seq_length:(local_rank + 1) * ctx.sub_seq_length]
|
||||
grad_k /= local_world_size
|
||||
|
||||
# calculate gradient for sub_q
|
||||
grad_q = torch.zeros_like(
|
||||
sub_q,
|
||||
dtype=sub_q.dtype,
|
||||
device=get_current_device(),
|
||||
)
|
||||
|
||||
# compute with local sub_k
|
||||
start_idx, end_idx = _calc_current_device_range(local_rank, ctx.sub_seq_length)
|
||||
grad_q += torch.matmul(grad_output[:, :, start_idx:end_idx], sub_k)
|
||||
|
||||
# compute QK^T in ring-all-reduce style
|
||||
for i in range(local_world_size - 1):
|
||||
sub_k = ring_forward(sub_k, ParallelMode.SEQUENCE)
|
||||
start_idx, end_idx = _calc_incoming_device_range(i, local_rank, local_world_size, ctx.sub_seq_length)
|
||||
grad_q += torch.matmul(grad_output[:, :, start_idx:end_idx], sub_k)
|
||||
|
||||
grad_q /= local_world_size
|
||||
|
||||
return grad_q, grad_k, None, None, None
|
||||
|
||||
|
||||
class RingAV(torch.autograd.Function):
|
||||
"""
|
||||
Calculate AV in a ring-exchange style
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, attention_score, sub_v, batch_size, num_attention_heads, attention_head_size, sub_seq_length):
|
||||
local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE)
|
||||
local_world_size = gpc.get_world_size(ParallelMode.SEQUENCE)
|
||||
local_start_idx, local_end_idx = _calc_current_device_range(local_rank, sub_seq_length)
|
||||
|
||||
sub_attention_result = torch.zeros(batch_size * num_attention_heads,
|
||||
sub_seq_length,
|
||||
attention_head_size,
|
||||
device=get_current_device(),
|
||||
dtype=attention_score.dtype)
|
||||
|
||||
# save tensors for backward
|
||||
ctx.save_for_backward(attention_score, sub_v)
|
||||
ctx.sub_seq_length = sub_seq_length
|
||||
|
||||
# compute local AV
|
||||
part_av = torch.matmul(attention_score[:, :, local_start_idx:local_end_idx], sub_v)
|
||||
sub_attention_result += part_av
|
||||
|
||||
# compute AV in ring - all - reduce style
|
||||
for i in range(local_world_size - 1):
|
||||
sub_v = ring_forward(sub_v, ParallelMode.SEQUENCE)
|
||||
start_idx, end_idx = _calc_incoming_device_range(i, local_rank, local_world_size, sub_seq_length)
|
||||
|
||||
# compute QK^T
|
||||
part_av = torch.matmul(attention_score[:, :, start_idx:end_idx], sub_v)
|
||||
sub_attention_result += part_av
|
||||
return sub_attention_result
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
local_rank = gpc.get_local_rank(ParallelMode.SEQUENCE)
|
||||
local_world_size = gpc.get_world_size(ParallelMode.SEQUENCE)
|
||||
local_start_idx, local_end_idx = _calc_current_device_range(local_rank, ctx.sub_seq_length)
|
||||
attention_scores, sub_v = ctx.saved_tensors
|
||||
|
||||
# calculate gradient of v
|
||||
grad_v = torch.matmul(attention_scores.transpose(2, 1), grad_output)
|
||||
dist.all_reduce(grad_v, group=gpc.get_group(ParallelMode.SEQUENCE))
|
||||
grad_v = grad_v[:, local_start_idx:local_end_idx]
|
||||
grad_v /= local_world_size
|
||||
|
||||
# calculate gradient for attention score
|
||||
grad_attention_score = torch.zeros_like(attention_scores, dtype=grad_output.dtype, device=get_current_device())
|
||||
|
||||
# compute with local sub_k
|
||||
grad_attention_score[:, :, local_start_idx:local_end_idx] += torch.matmul(grad_output, sub_v.transpose(2, 1))
|
||||
|
||||
# compute QK^T in ring-all-reduce style
|
||||
for i in range(local_world_size - 1):
|
||||
sub_v = ring_forward(sub_v, ParallelMode.SEQUENCE)
|
||||
start_idx, end_idx = _calc_incoming_device_range(i, local_rank, local_world_size, ctx.sub_seq_length)
|
||||
|
||||
# compute grad_q
|
||||
grad_attention_score[:, :, start_idx:end_idx] += torch.matmul(grad_output, sub_v.transpose(2, 1))
|
||||
|
||||
return grad_attention_score, grad_v, None, None, None, None
|
15
colossalai/legacy/nn/layer/parallel_sequence/_utils.py
Normal file
15
colossalai/legacy/nn/layer/parallel_sequence/_utils.py
Normal file
@@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
|
||||
def _calc_incoming_device_range(i, rank, world_size, sub_seq_length):
|
||||
device_of_incoming_k = (rank - i - 1) % world_size
|
||||
start_idx = sub_seq_length * device_of_incoming_k
|
||||
end_idx = sub_seq_length * (device_of_incoming_k + 1)
|
||||
return start_idx, end_idx
|
||||
|
||||
|
||||
def _calc_current_device_range(rank, sub_seq_length):
|
||||
start_idx = sub_seq_length * rank
|
||||
end_idx = sub_seq_length * (rank + 1)
|
||||
return start_idx, end_idx
|
237
colossalai/legacy/nn/layer/parallel_sequence/layers.py
Normal file
237
colossalai/legacy/nn/layer/parallel_sequence/layers.py
Normal file
@@ -0,0 +1,237 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import Parameter
|
||||
|
||||
import colossalai
|
||||
from colossalai.context import seed
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.kernel import FusedScaleMaskSoftmax
|
||||
from colossalai.kernel.cuda_native.scaled_softmax import AttnMaskType
|
||||
from colossalai.legacy.nn.layer.parallel_sequence._operation import RingAV, RingQK
|
||||
from colossalai.legacy.registry import LAYERS
|
||||
|
||||
|
||||
@LAYERS.register_module
|
||||
class TransformerSelfAttentionRing(nn.Module):
|
||||
"""Parallel self-attention layer abstract class.
|
||||
Self-attention layer takes input with size [b, s, h]
|
||||
and returns output of the same size.
|
||||
|
||||
Args:
|
||||
hidden_size (int): hidden size.
|
||||
num_attention_heads (int): number of attention heads.
|
||||
attention_dropout (float): dropout probability for attention layer.
|
||||
attention_mask_func (:class:`typing.Callable`): Mask function to be applied.
|
||||
layer_number (int): number of layers.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
hidden_size,
|
||||
num_attention_heads,
|
||||
attention_dropout,
|
||||
attention_mask_func,
|
||||
layer_number,
|
||||
apply_query_key_layer_scaling: bool = False,
|
||||
convert_fp16_to_fp32_in_softmax: bool = False,
|
||||
attn_mask_type=AttnMaskType.padding,
|
||||
masked_softmax_fusion=True,
|
||||
fp16=False,
|
||||
bf16=False):
|
||||
super().__init__()
|
||||
self.convert_fp16_to_fp32_in_softmax = convert_fp16_to_fp32_in_softmax
|
||||
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
||||
self.attention_mask_func = attention_mask_func
|
||||
self.layer_number = layer_number
|
||||
self.hidden_size = hidden_size
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.attn_mask_type = attn_mask_type
|
||||
assert self.layer_number > 0
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
if self.apply_query_key_layer_scaling:
|
||||
self.convert_fp16_to_fp32_in_softmax = True
|
||||
|
||||
assert self.hidden_size % self.num_attention_heads == 0, \
|
||||
'hidden size is not divisible by the number of attention heads'
|
||||
|
||||
self.hidden_size_per_attention_head = self.hidden_size // num_attention_heads
|
||||
|
||||
self.world_size = gpc.get_world_size(ParallelMode.SEQUENCE)
|
||||
|
||||
# Strided linear layer.
|
||||
self.query_key_value = _Linear(
|
||||
hidden_size,
|
||||
3 * self.hidden_size,
|
||||
)
|
||||
|
||||
self.coeff = None
|
||||
self.norm_factor = math.sqrt(self.hidden_size)
|
||||
|
||||
if self.apply_query_key_layer_scaling:
|
||||
self.coeff = layer_number
|
||||
self.norm_factor *= self.coeff
|
||||
|
||||
self.scale_mask_softmax = FusedScaleMaskSoftmax(fp16, bf16, self.attn_mask_type, masked_softmax_fusion,
|
||||
self.attention_mask_func, self.convert_fp16_to_fp32_in_softmax,
|
||||
self.coeff)
|
||||
|
||||
self.attention_dropout = nn.Dropout(attention_dropout)
|
||||
|
||||
# Output.
|
||||
self.dense = _Linear(hidden_size, hidden_size, bias=True, skip_bias_add=True)
|
||||
|
||||
def forward(self, hidden_states, attention_mask):
|
||||
# hidden_states: [sub_seq_len, batch_size, hidden_size]
|
||||
# attention_mask: [batch_size, 1, sub_seq_len, seq_len]
|
||||
sub_seq_length, batch_size, hidden_size = hidden_states.size()
|
||||
|
||||
# =====================
|
||||
# Query, Key, and Value
|
||||
# =====================
|
||||
|
||||
# Attention heads shape change:
|
||||
# [sub_seq_len, batch_size, hidden_size] --> [sub_seq_len, batch_size, (3 * head_size * num_heads)]
|
||||
mixed_x_layer = self.query_key_value(hidden_states)
|
||||
|
||||
# [sub_seq_len, batch_size, num_heads, 3 * head_size] --> 3 [sub_seq_len, batch_size, num_heads, head_size]
|
||||
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads,
|
||||
3 * self.hidden_size_per_attention_head)
|
||||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
||||
|
||||
# split into query, key and value
|
||||
last_dim = mixed_x_layer.dim() - 1
|
||||
last_dim_value = mixed_x_layer.size(-1)
|
||||
assert last_dim_value % 3 == 0, 'the last dimension is not a multiple of 3, ' \
|
||||
'cannot be divided into query, key and value'
|
||||
partition_size = last_dim_value // 3
|
||||
(query_layer, key_layer, value_layer) = torch.split(mixed_x_layer, partition_size, dim=last_dim)
|
||||
|
||||
# attention scores: [batch_size, num_heads, sub_seq_len, seq_len]
|
||||
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0),
|
||||
key_layer.size(0) * self.world_size)
|
||||
|
||||
# [sub_seq_len, batch_size, num_heads, head_size] -> [sub_seq_len, batch_size * num_heads, head_size]
|
||||
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
||||
# [sub_seq_len, batch_size, num_heads, head_size] -> [sub_seq_len, batch_size * num_heads, head_size]
|
||||
key_layer = key_layer.view(key_layer.size(0), output_size[0] * output_size[1], -1)
|
||||
|
||||
# attention_scores: [batch_size * num_heads, sub_seq_len, seq_len]
|
||||
attention_scores = RingQK.apply(
|
||||
query_layer.transpose(0, 1).contiguous(), # [batch_size * num_heads, sub_seq_len, head_size]
|
||||
key_layer.transpose(0, 1).contiguous(), # [batch_size * num_heads, sub_seq_len, head_size],
|
||||
batch_size,
|
||||
self.num_attention_heads,
|
||||
sub_seq_length)
|
||||
|
||||
attention_scores /= self.norm_factor
|
||||
|
||||
# change view to [batch_size, num_heads, sub_seq_len, seq_len]
|
||||
attention_scores = attention_scores.view(*output_size)
|
||||
|
||||
# change shape to [batch_size, num_heads, sub_seq_len, seq_len]
|
||||
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask)
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
with seed(ParallelMode.TENSOR):
|
||||
attention_probs = self.attention_dropout(attention_probs)
|
||||
|
||||
# context layer shape: [batch_size, num_heads, sub_seq_len, head_size]
|
||||
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
||||
|
||||
# change view [sub_seq_len, batch_size * num_heads, head_size]
|
||||
value_layer = value_layer.contiguous().view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
||||
|
||||
# # change view [b * num_heads, sub_seq_len, seq_len]
|
||||
attention_probs = attention_probs.view(
|
||||
attention_probs.size(0) * attention_probs.size(1), attention_probs.size(2), attention_probs.size(3))
|
||||
|
||||
# matmul: [batch_size * num_heads, sub_seq_len, head_size]
|
||||
context_layer = RingAV.apply(attention_probs,
|
||||
value_layer.transpose(0, 1).contiguous(), batch_size, self.num_attention_heads,
|
||||
self.hidden_size_per_attention_head, sub_seq_length)
|
||||
|
||||
# change view [batch_size, num_heads, sub_seq_len, head_size]
|
||||
context_layer = context_layer.view(*output_size)
|
||||
|
||||
# [batch_size, num_heads, sub_seq_len, head_size] -> [sub_seq_len, batch_size, num_heads, head_size]
|
||||
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
||||
|
||||
# [sub_seq_len, batch_size, num_heads, head_size] -> [sub_seq_len, batch_size, hidden_size]
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_attention_head *
|
||||
self.num_attention_heads,)
|
||||
context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
output, bias = self.dense(context_layer)
|
||||
|
||||
return output, bias
|
||||
|
||||
def __repr__(self):
|
||||
return f'TransformerSelfAttentionRing(apply_query_key_layer_scaling={self.apply_query_key_layer_scaling}, ' \
|
||||
f'layer_number={self.layer_number}, hidden_size:{self.hidden_size}, attention_dropout={self.attention_dropout}, ' \
|
||||
f'attn_mask_type={self.attn_mask_type}, num_attention_heads={self.num_attention_heads}, ' \
|
||||
f'hidden_size_per_attention_head={self.hidden_size_per_attention_head}, coeff={self.coeff}, norm_factor={self.norm_factor}, ' \
|
||||
f'convert_fp16_to_fp32_in_softmax={self.convert_fp16_to_fp32_in_softmax})'
|
||||
|
||||
|
||||
class _Linear(nn.Module):
|
||||
"""Linear layer with column parallelism.
|
||||
The linear layer is defined as Y = XA + b. A is parallelized along
|
||||
its second dimension as A = [A_1, ..., A_p].
|
||||
Arguments:
|
||||
input_size: first dimension of matrix A.
|
||||
output_size: second dimension of matrix A.
|
||||
bias: If true, add bias
|
||||
init_method: method to initialize weights. Note that bias is always set
|
||||
to zero.
|
||||
stride: For the strided linear layers.
|
||||
keep_master_weight_for_test: This was added for testing and should be
|
||||
set to False. It returns the master weights
|
||||
used for initialization.
|
||||
skip_bias_add: This was added to enable performance optimizations where bias
|
||||
can be fused with other elementwise operations. we skip
|
||||
adding bias but instead return it.
|
||||
"""
|
||||
|
||||
def __init__(self, input_size, output_size, bias=True, skip_bias_add=False):
|
||||
super(_Linear, self).__init__()
|
||||
|
||||
# Keep input parameters
|
||||
self.input_size = input_size
|
||||
self.output_size = output_size
|
||||
self.skip_bias_add = skip_bias_add
|
||||
|
||||
self.weight = Parameter(torch.empty(
|
||||
self.output_size,
|
||||
self.input_size,
|
||||
))
|
||||
nn.init.xavier_normal_(self.weight)
|
||||
|
||||
if bias:
|
||||
self.bias = Parameter(torch.empty(self.output_size))
|
||||
# Always initialize bias to zero.
|
||||
with torch.no_grad():
|
||||
self.bias.zero_()
|
||||
else:
|
||||
self.register_parameter('bias', None)
|
||||
|
||||
def forward(self, input_):
|
||||
# Matrix multiply.
|
||||
bias = self.bias if not self.skip_bias_add else None
|
||||
output = F.linear(input_, self.weight, bias)
|
||||
|
||||
if self.skip_bias_add:
|
||||
return output, self.bias
|
||||
else:
|
||||
return output
|
||||
|
||||
def __repr__(self):
|
||||
return f'Linear(in_features={self.input_size}, out_features={self.output_size}, ' + \
|
||||
f'bias={self.bias is not None}, skip_bias_add={self.skip_bias_add})'
|
Reference in New Issue
Block a user