mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 03:20:52 +00:00
[legacy] move communication and nn to legacy and refactor logger (#4671)
* [legacy] move communication to legacy (#4640) * [legacy] refactor logger and clean up legacy codes (#4654) * [legacy] make logger independent to gpc * [legacy] make optim independent to registry * [legacy] move test engine to legacy * [legacy] move nn to legacy (#4656) * [legacy] move nn to legacy * [checkpointio] fix save hf config * [test] remove useledd rpc pp test * [legacy] fix nn init * [example] skip tutorial hybriad parallel example * [devops] test doc check * [devops] test doc check
This commit is contained in:
@@ -1,11 +1,8 @@
|
||||
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
|
||||
|
||||
from colossalai.legacy.registry import LR_SCHEDULERS
|
||||
|
||||
from .delayed import DelayerScheduler, WarmupDelayerScheduler, WarmupScheduler
|
||||
|
||||
|
||||
@LR_SCHEDULERS.register_module
|
||||
class CosineAnnealingLR(_CosineAnnealingLR):
|
||||
r"""Set the learning rate of each parameter group using a cosine annealing
|
||||
schedule, where :math:`\eta_{max}` is set to the initial lr and
|
||||
@@ -49,7 +46,6 @@ class CosineAnnealingLR(_CosineAnnealingLR):
|
||||
super().__init__(optimizer, total_steps, eta_min=eta_min, last_epoch=last_epoch)
|
||||
|
||||
|
||||
@LR_SCHEDULERS.register_module
|
||||
class CosineAnnealingWarmupLR(WarmupScheduler):
|
||||
"""Cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied.
|
||||
|
||||
@@ -70,7 +66,6 @@ class CosineAnnealingWarmupLR(WarmupScheduler):
|
||||
super().__init__(optimizer, warmup_steps, base_scheduler)
|
||||
|
||||
|
||||
@LR_SCHEDULERS.register_module
|
||||
class FlatAnnealingLR(DelayerScheduler):
|
||||
"""Flat and cosine annealing learning rate scheduler. The learning rate will be a fixed value before starting decay.
|
||||
|
||||
@@ -91,7 +86,6 @@ class FlatAnnealingLR(DelayerScheduler):
|
||||
super().__init__(optimizer, flat_steps, base_scheduler, last_epoch=last_epoch)
|
||||
|
||||
|
||||
@LR_SCHEDULERS.register_module
|
||||
class FlatAnnealingWarmupLR(WarmupDelayerScheduler):
|
||||
"""Flat and cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be
|
||||
applied, and then the learning rate will be a fixed value before starting decay.
|
||||
|
Reference in New Issue
Block a user