dist runtime opt source

This commit is contained in:
Runyu Lu 2024-05-27 07:08:08 +00:00
parent bd38fe6b91
commit 55a5dd9dcd
6 changed files with 314 additions and 45 deletions

View File

@ -521,3 +521,67 @@ class BatchBucket:
def __repr__(self) -> str:
return f"(sequences_dict={self._sequences_dict}, is_prompts={self.is_prompts})"
class RPCBatchBucket(BatchBucket):
def __init__(self, *args, **argv):
self.is_rpc = True
super().__init__(*args, **argv)
# For compatibility
def get_1D_inputs(self) -> List[int]:
assert len(self._sequences_dict) > 0, "No sequence in the batch"
first_seq = next(iter(self._sequences_dict.values())) # not exactly the first sequence
if first_seq.output_len == 0:
# Assume prefill stage
assert all(
seq.output_len == 0 for seq in self._sequences_dict.values()
), "Sequence stage (Prefill/Decoding) must be the same in the batch"
out_li = []
seq_ids = sorted(self._sequences_indexes.keys(), key=lambda x: self._sequences_indexes[x])
for seq_id in seq_ids:
seq: Sequence = self._sequences_dict[seq_id]
out_li.extend(seq.input_token_id)
return out_li
else:
# Assume decoding stage
if self.use_spec_dec:
# For Speculative Decoding
# the number of tokens to be verified in parallel plus the correct token in the last step
return self.get_1D_inputs_spec_dec(self.num_tokens_to_verify + 1)
assert all(
seq.output_len > 0 for seq in self._sequences_dict.values()
), "Sequence stage (Prefill/Decoding) must be the same in the batch"
assert self.is_compact, "BatchBucket is not compact"
out = [0] * self.current_batch_size
for seq_id, index_in_b in self._sequences_indexes.items():
seq: Sequence = self._sequences_dict[seq_id]
out[index_in_b] = seq.output_token_id[-1]
return out
# For compatibility
def get_sequence_lengths(self) -> List[int]:
assert self.is_compact # Debug usage
sequence_lengths = self.seq_lengths[: self.current_batch_size]
return sequence_lengths
def get_1D_inputs_spec_dec(self, n: int) -> List[int]:
# Used for main model verification in **Decoding Stage**
# `n` is the number of tokens to be verified,
# and so that prepare the last `n` tokens of each sequence as the inputs
assert len(self._sequences_dict) > 0, "No sequence in the batch"
assert all(
seq.output_len >= n for seq in self._sequences_dict.values()
), "Sequence output tokens must be greater than or equal to the number of tokens to be verified."
out_li = []
seq_ids = sorted(self._sequences_indexes.keys(), key=lambda x: self._sequences_indexes[x])
for seq_id in seq_ids:
seq: Sequence = self._sequences_dict[seq_id]
out_li.extend(seq.output_token_id[-n:])
return out_li
# For compatibility
def get_block_table_tensor(self) -> torch.Tensor:
assert self.is_compact # Debug usage
block_table = self.block_tables[: self.current_batch_size]
return block_table

View File

@ -87,8 +87,12 @@ class InputMetaData(RPC_PARAM):
def to_rpc_param(self) -> Dict[str, any]:
return {
"block_tables": self.block_tables.tolist(),
"sequence_lengths": self.sequence_lengths.tolist(),
"block_tables": self.block_tables.tolist()
if isinstance(self.block_tables, torch.Tensor)
else self.block_tables,
"sequence_lengths": self.sequence_lengths.tolist()
if isinstance(self.block_tables, torch.Tensor)
else self.sequence_lengths,
"batch_size": self.batch_size,
"is_prompts": self.is_prompts,
"use_cuda_kernel": self.use_cuda_kernel,
@ -113,10 +117,14 @@ class InputMetaData(RPC_PARAM):
return InputMetaData(
block_tables=torch.tensor(
rpc_dict["block_tables"], dtype=torch.int, device=get_accelerator().get_current_device()
),
)
if isinstance(rpc_dict["block_tables"], list)
else rpc_dict["block_tables"],
sequence_lengths=torch.tensor(
rpc_dict["sequence_lengths"], dtype=torch.int, device=get_accelerator().get_current_device()
),
)
if isinstance(rpc_dict["sequence_lengths"], list)
else rpc_dict["sequence_lengths"],
batch_size=rpc_dict["batch_size"],
is_prompts=rpc_dict["is_prompts"],
use_cuda_kernel=rpc_dict["use_cuda_kernel"],

View File

@ -4,7 +4,7 @@ import torch
from transformers.configuration_utils import PretrainedConfig
from transformers.generation import GenerationConfig
from colossalai.inference.batch_bucket import BatchBucket
from colossalai.inference.batch_bucket import BatchBucket, RPCBatchBucket
from colossalai.inference.config import InferenceConfig
from colossalai.inference.flash_decoding_utils import FDIntermTensors
from colossalai.inference.kv_cache import KVCacheManager, RPCKVCacheManager
@ -376,7 +376,7 @@ class RPCRequestHandler(RequestHandler):
# TODO In the continuous batching scenario, the batch size may be greater than max_batch_size,
# which may cause bugs and this issue should be fixed later.
self.running_bb = BatchBucket(
self.running_bb = RPCBatchBucket(
num_heads=model_config.num_attention_heads // inference_config.tp_size,
head_dim=head_dim,
max_batch_size=self.max_batch_size,
@ -386,7 +386,7 @@ class RPCRequestHandler(RequestHandler):
fd_interm_tensor=None,
dtype=self.dtype,
)
self.prefill_bb = BatchBucket(
self.prefill_bb = RPCBatchBucket(
num_heads=model_config.num_attention_heads // inference_config.tp_size,
head_dim=head_dim,
max_batch_size=self.max_batch_size,

View File

@ -11,7 +11,7 @@ from torch import multiprocessing as mp
from transformers import AutoConfig, PreTrainedTokenizer, PreTrainedTokenizerFast
from transformers.configuration_utils import PretrainedConfig
from colossalai.inference.batch_bucket import BatchBucket
from colossalai.inference.batch_bucket import RPCBatchBucket
from colossalai.inference.config import InferenceConfig, InputMetaData
from colossalai.inference.executor.rpc_worker import rpcWorkerService
from colossalai.inference.utils import find_available_ports
@ -161,8 +161,16 @@ class RPCInferenceEngine(InferenceEngine):
raise Exception("conn error!")
self.logger.info(f"Build RPC Connection Success! Begin to load model...")
asyncio.run(self.init_worker_env())
self._init_worker_forward()
self.logger.info(f"init dist env over")
def _init_worker_forward(self):
"""
Async wrappers for forward, because it will be invoked many times.
"""
assert len(self.workers) == self.tp_size, "init workers first"
self.worker_forwards = [rpyc.async_(worker.execute_model_forward) for worker in self.workers]
async def async_parallel_wrapper(self, f, *args, **kwargs):
async_res = rpyc.async_(f)(*args, **kwargs)
await asyncio.to_thread(async_res.wait)
@ -209,7 +217,8 @@ class RPCInferenceEngine(InferenceEngine):
def init_device_cache(self, alloc_shape: Tuple[Tuple[int, ...], Tuple[int, ...]]):
asyncio.run(self._init_device_cache(alloc_shape))
def prepare_input(self, batch: BatchBucket) -> Tuple[List[int], InputMetaData]:
def prepare_input(self, batch: RPCBatchBucket) -> Tuple[List[int], InputMetaData]:
assert batch.is_rpc, "the batch must be RPCBatchBucket"
input_ids = batch.get_1D_inputs()
sequence_lengths = batch.get_sequence_lengths()
@ -219,7 +228,7 @@ class RPCInferenceEngine(InferenceEngine):
n_tokens = batch.current_batch_size
if batch.use_spec_dec:
n_tokens = batch.num_tokens_to_verify + 1
assert n_tokens == input_ids.size(0)
assert n_tokens == len(input_ids)
n_tokens = n_tokens * batch.current_batch_size
batch_token_ids = None
@ -251,20 +260,38 @@ class RPCInferenceEngine(InferenceEngine):
batch_token_ids=batch_token_ids,
)
return input_ids.tolist(), input_meta_data
return input_ids, input_meta_data
async def async_parallel_forward(self, async_f, *args, **kwargs):
async_res = async_f(*args, **kwargs)
await asyncio.to_thread(async_res.wait)
assert async_res.ready
return async_res.value
async def step_(self, input_token_ids, input_meta_data: InputMetaData):
assert len(self.workers) == self.tp_size, "init workers first"
init_tasks = [
self.async_parallel_wrapper(
worker.execute_model_forward,
input_token_ids,
input_meta_data.to_rpc_param(),
self.generation_config_dict,
)
for worker in self.workers
]
init_tasks = []
for rank, async_forward in enumerate(self.worker_forwards):
if rank == 0:
init_tasks.append(
self.async_parallel_forward(
async_forward,
input_token_ids,
input_meta_data.to_rpc_param(),
self.generation_config_dict,
)
)
else:
init_tasks.append(
self.async_parallel_forward(
async_forward,
None,
None,
None,
)
)
ret = await asyncio.gather(*init_tasks)
return ret[0]
@ -277,7 +304,6 @@ class RPCInferenceEngine(InferenceEngine):
next_tokens = asyncio.run(self.step_(input_token_ids, input_meta_data))
# update the request_handler
next_tokens = torch.tensor(next_tokens, dtype=torch.int)
self.request_handler.append_next_tokens(next_tokens)
finished_sequences = self.request_handler.update()
return finished_sequences

View File

@ -1,4 +1,4 @@
from typing import List, Tuple, Union
from typing import List, Optional, Tuple, Union
import rpyc
import torch
@ -18,7 +18,7 @@ from colossalai.inference.modeling.policy import (
model_policy_map,
)
from colossalai.inference.sampler import search_tokens
from colossalai.inference.utils import get_model_size
from colossalai.inference.utils import Timer, get_model_size
from colossalai.interface import ModelWrapper
from colossalai.logging import get_dist_logger
from colossalai.pipeline.stage_manager import PipelineStageManager
@ -51,6 +51,12 @@ class rpcWorkerService(rpyc.Service):
def exposed_init_dist_env(self, rank, world_size, master_address, master_port):
logger.info(f"init process group for rank {rank}")
colossalai.launch(rank=rank, world_size=world_size, port=master_port, host=master_address)
self.rank = rank
# profiling only, remove later
self.t_prepare = Timer("[Timer] prepare the data")
self.t_exe = Timer("[Timer] execute the model forward")
self.t_sampler = Timer("[Timer] sampler time")
logger.info(f"init process group done for rank {rank}")
def exposed_init_model(
@ -98,38 +104,50 @@ class rpcWorkerService(rpyc.Service):
logger.info("physical cache init over")
def exposed_execute_model_forward(
self, input_token_ids_param: List[int], input_meta_data_param: dict, generation_config_param: dict
self,
input_token_ids_param: Optional[List[int]] = None,
input_meta_data_param: Optional[dict] = None,
generation_config_param: Optional[dict] = None,
):
# prepare the data for model forward
input_meta_data = InputMetaData.from_rpc_param(input_meta_data_param)
input_meta_data.fd_inter_tensor = self.fd_inter_tensor
with self.t_prepare:
input_token_ids, input_meta_data, generation_config = self._broadcast_param_to_all_workers(
input_token_ids_param=input_token_ids_param,
input_meta_data_param=input_meta_data_param,
generation_config_param=generation_config_param,
)
if input_meta_data.is_prompts:
n_tokens = input_meta_data.sequence_lengths.sum().item()
else:
n_tokens = input_meta_data.batch_size
input_token_ids = torch.tensor(input_token_ids_param, dtype=torch.int, device=self.device)
# execute the model
logits = self.model(
input_token_ids,
self.output_tensor[:n_tokens],
input_meta_data,
self.k_cache,
self.v_cache,
)
with self.t_exe:
logits = self.model(
input_token_ids,
self.output_tensor[:n_tokens],
input_meta_data,
self.k_cache,
self.v_cache,
)
# sampler
if self.inference_config.pad_input:
logits = logits[:, -1, :]
next_tokens = search_tokens(
generation_config_param,
logits,
input_meta_data.is_prompts,
input_meta_data.batch_token_ids,
)
if self.rank == 0:
with self.t_sampler:
# sampler
if self.inference_config.pad_input:
logits = logits[:, -1, :]
next_tokens = search_tokens(
generation_config,
logits,
input_meta_data.is_prompts,
input_meta_data.batch_token_ids,
)
# return the tokens generated to scheduler
return next_tokens.tolist()
# return the tokens generated to scheduler
# only rank 0 need to pass the data back
# to reduce the overhead of rpc param passing
return next_tokens.cpu()
def _init_output_tensor(self):
alloc_shape = (
@ -166,6 +184,84 @@ class rpcWorkerService(rpyc.Service):
self.fd_inter_tensor = fd_inter_tensor
def _broadcast_param_to_all_workers(
self,
input_token_ids_param: Optional[List[int]] = None,
input_meta_data_param: Optional[dict] = None,
generation_config_param: Optional[dict] = None,
):
if self.rank == 0:
input_meta_data = InputMetaData.from_rpc_param(input_meta_data_param)
input_meta_data.fd_inter_tensor = self.fd_inter_tensor
input_token_ids = torch.tensor(input_token_ids_param, dtype=torch.int, device=self.device)
generation_config = generation_config_param
if dist.get_world_size() > 1:
broadcast_list = {}
for k, v in input_meta_data_param.items():
if not isinstance(v, List):
broadcast_list[k] = v
# Pass the tensor shape and type in advance for
# other workers to prepare the empty tensor and async transport tensors
broadcast_list["block_tables"] = (
input_meta_data.block_tables.size(),
input_meta_data.block_tables.dtype,
)
broadcast_list["sequence_lengths"] = (
input_meta_data.sequence_lengths.size(),
input_meta_data.sequence_lengths.dtype,
)
broadcast_list["input_token_ids"] = (input_token_ids.size(), input_token_ids.dtype)
# Generation Config Param
broadcast_list["generation_config"] = generation_config_param
# send some meta data and some tensor shape
torch.distributed.broadcast_object_list([broadcast_list], src=self.rank)
# send the real tensor
torch.distributed.broadcast(input_meta_data.block_tables, src=self.rank)
torch.distributed.broadcast(input_meta_data.sequence_lengths, src=self.rank)
torch.distributed.broadcast(input_token_ids, src=self.rank)
else:
assert input_meta_data_param is None, "Input Must Be None"
# recv the meta data
recv_list = [None]
torch.distributed.broadcast_object_list(recv_list, src=0)
input_meta_data_param = recv_list[0]
generation_config = input_meta_data_param["generation_config"]
blocktable_shape, blocktable_type = input_meta_data_param["block_tables"]
blocktables = torch.empty(blocktable_shape, dtype=blocktable_type, device=self.device)
sequence_lengths_shape, sequence_lengths_type = input_meta_data_param["sequence_lengths"]
sequence_lengths = torch.empty(sequence_lengths_shape, dtype=sequence_lengths_type, device=self.device)
input_token_ids_shape, input_token_ids_type = input_meta_data_param["input_token_ids"]
input_token_ids = torch.empty(input_token_ids_shape, dtype=input_token_ids_type, device=self.device)
# recv the real tensor
async1 = torch.distributed.broadcast(blocktables, src=0, async_op=True)
async2 = torch.distributed.broadcast(sequence_lengths, src=0, async_op=True)
async3 = torch.distributed.broadcast(input_token_ids, src=0, async_op=True)
input_meta_data_param["sequence_lengths"] = sequence_lengths
input_meta_data_param["blocktables"] = blocktables
input_meta_data = InputMetaData.from_rpc_param(input_meta_data_param)
input_meta_data.fd_inter_tensor = self.fd_inter_tensor
async1.wait()
async2.wait()
async3.wait()
input_meta_data.block_tables = blocktables
input_meta_data.sequence_lengths = sequence_lengths
return input_token_ids, input_meta_data, generation_config
def _init_model(self, model_or_path: Union[nn.Module, str], model_policy: Policy = None):
"""
Shard model or/and Load weight
@ -304,3 +400,11 @@ class rpcWorkerService(rpyc.Service):
logger.info(f"Worker rank {dist_rank}: Sum after all_reduce: {data.item()}")
return data.item()
def __del__(self):
"""
profiling only, remove later
"""
del self.t_prepare
del self.t_exe
del self.t_sampler

View File

@ -113,3 +113,70 @@ def find_available_ports(num: int):
print(f"An OS error occurred: {e}")
raise RuntimeError("Error finding available ports")
return free_ports
"""
below just for profiling temporarily, will removed before merge
"""
import time
from contextlib import asynccontextmanager, contextmanager
@contextmanager
def timer(name=""):
# (@lry89757) will remove later
start_time = time.time()
try:
yield
finally:
end_time = time.time()
elapsed_time = end_time - start_time
print(f"{name} took {elapsed_time:.6f} seconds")
class Timer:
# (@lry89757) will remove later
def __init__(self, name=""):
print(f"init timer, {name}")
self.name = name
self.times = []
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
end_time = time.time()
elapsed_time = end_time - self.start_time
self.times.append(elapsed_time)
print(f"{self.name} took {elapsed_time:.6f} seconds")
self.print_info()
def print_info(self):
average_prefill_time = self.times[0]
print(f"{self.name} prefill average time: {average_prefill_time:.6f} seconds")
if len(self.times) > 1:
average_decoding_time = sum(self.times[1:]) / len(self.times[1:])
print(f"{self.name} decoding average time: {average_decoding_time:.6f} seconds")
def __del__(self):
if self.times:
average_prefill_time = self.times[0]
print(f"{self.name} prefill average time: {average_prefill_time:.6f} seconds")
if len(self.times) > 1:
average_decoding_time = sum(self.times[1:]) / len(self.times[1:])
print(f"{self.name} decoding average time: {average_decoding_time:.6f} seconds")
else:
print(f"{self.name} no timings recorded")
@asynccontextmanager
async def async_timer(name=""):
# (@lry89757) will remove later
start_time = time.time()
try:
yield
finally:
end_time = time.time()
elapsed_time = end_time - start_time
print(f"{name} took {elapsed_time:.6f} seconds")