[inference] added inference template (#5375)

This commit is contained in:
Frank Lee
2024-02-07 17:11:43 +08:00
committed by GitHub
parent 8106ede07f
commit 58740b5f68
3 changed files with 65 additions and 9 deletions

View File

@@ -6,9 +6,10 @@ import torch
from transformers import AutoTokenizer, GenerationConfig, LlamaConfig, LlamaForCausalLM
import colossalai
from colossalai.inference.config import InferenceConfig
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.inference.flash_decoding_utils import FDIntermTensors
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
def setup_seed(seed):
@@ -18,7 +19,7 @@ def setup_seed(seed):
random.seed(seed)
def check_inference_engine(test_cai=False):
def check_inference_engine(use_engine=False, prompt_template=None):
setup_seed(20)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
model = (
@@ -43,14 +44,17 @@ def check_inference_engine(test_cai=False):
top_p = 0.5
top_k = 50
if test_cai:
inference_config = InferenceConfig(max_output_len=output_len)
if use_engine:
inference_config = InferenceConfig(max_output_len=output_len, prompt_template=prompt_template)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k)
outputs = inference_engine.generate(generation_config=generation_config)
else:
if prompt_template:
# apply prompt template
inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs]
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
@@ -68,14 +72,22 @@ def check_inference_engine(test_cai=False):
return outputs
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
cai_outputs = check_inference_engine(True)
transformer_outputs = check_inference_engine(False)
@parameterize("prompt_template", [None, "llama"])
def check_output_consistency(prompt_template):
cai_outputs = check_inference_engine(use_engine=True, prompt_template=prompt_template)
transformer_outputs = check_inference_engine(use_engine=False, prompt_template=prompt_template)
for s1, s2 in zip(cai_outputs, transformer_outputs):
assert s1 == s2, f"\nColossalAI Output: {s1}\nTransformers Output: {s2}"
# clear singleton flash decoding tensors
FDIntermTensors._instances = {}
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
check_output_consistency()
@pytest.mark.dist
@rerun_if_address_is_in_use()