mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-11 05:49:55 +00:00
[shardformer] adapted T5 and LLaMa test to use kit (#4049)
* [shardformer] adapted T5 and LLaMa test to use kit * polish code
This commit is contained in:
@@ -6,24 +6,50 @@ from ..registry import ModelAttribute, model_zoo
|
||||
# ===============================
|
||||
# Register single-sentence T5
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
decoder_input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
||||
|
||||
|
||||
# define data gen function
|
||||
def data_gen_for_encoder_only():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
# Generated from following code snippet
|
||||
#
|
||||
# from transformers import T5Config, T5Tokenizer
|
||||
# config = T5Config(decoder_start_token_id=0)
|
||||
# tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
||||
# input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids
|
||||
input_ids = torch.Tensor([[13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5, 1]]).long()
|
||||
return dict(input_ids=input_ids)
|
||||
|
||||
|
||||
def data_gen_for_conditional_generation():
|
||||
# labels is generated with the following code
|
||||
#
|
||||
# labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids
|
||||
data = data_gen_for_encoder_only()
|
||||
labels = torch.Tensor([[644, 4598, 229, 19250, 5, 1]]).long()
|
||||
data['labels'] = labels
|
||||
return data
|
||||
|
||||
|
||||
def data_gen_for_t5_model():
|
||||
# decoder_inputs_ids is obtained with the following code
|
||||
#
|
||||
# decoder_input_ids = model._shift_right(input_ids)
|
||||
data = data_gen_for_encoder_only()
|
||||
decoder_input_ids = torch.Tensor([[0, 13959, 1566, 12, 2968, 10, 37, 629, 19, 1627, 5]]).long()
|
||||
data['decoder_input_ids'] = decoder_input_ids
|
||||
return data
|
||||
|
||||
|
||||
# output transform function
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.T5Config(d_model=128, num_layers=2)
|
||||
# define loss funciton
|
||||
loss_fn_for_t5_model = lambda x: x.last_hidden_state.mean()
|
||||
loss_fn_for_encoder_only = lambda x: x.last_hidden_state.mean()
|
||||
loss_fn_for_conditional_generation = lambda x: x.loss
|
||||
|
||||
# define model config
|
||||
config = transformers.T5Config(d_model=128, num_layers=2, dropout_rate=0, decoder_start_token_id=0)
|
||||
|
||||
# register the following models
|
||||
# transformers.T5Model,
|
||||
@@ -31,16 +57,19 @@ config = transformers.T5Config(d_model=128, num_layers=2)
|
||||
# transformers.T5EncoderModel,
|
||||
model_zoo.register(name='transformers_t5',
|
||||
model_fn=lambda: transformers.T5Model(config),
|
||||
data_gen_fn=data_gen,
|
||||
data_gen_fn=data_gen_for_t5_model,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_t5_model,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_t5_for_conditional_generation',
|
||||
model_fn=lambda: transformers.T5ForConditionalGeneration(config),
|
||||
data_gen_fn=data_gen,
|
||||
data_gen_fn=data_gen_for_conditional_generation,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_conditional_generation,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_t5_encoder_model',
|
||||
model_fn=lambda: transformers.T5EncoderModel(config),
|
||||
data_gen_fn=data_gen_for_encoder_only,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_encoder_only,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
|
Reference in New Issue
Block a user