[shardformer] chatglm support sequence parallel (#4482)

* [shardformer] chatglm support sequence parallel

[shardformer] chatglm support sequence parallel

[shardformer] chatglm support sequence parallel

[shardformer] chatglm support sequence parallel

[shardformer] chatglm support sequence parallel

[shardformer] chatglm support sequence parallel

* fix

fix

fix

fix
This commit is contained in:
flybird11111
2023-08-22 23:59:31 +08:00
committed by GitHub
parent 351351a36e
commit 59e252ecdb
11 changed files with 259 additions and 94 deletions

View File

@@ -9,6 +9,8 @@ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutpu
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import (
ChatGLMForConditionalGeneration,
@@ -146,6 +148,7 @@ class ChatGLMPipelineForwards:
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
logger = logging.get_logger(__name__)
output_hidden_states = (output_hidden_states
@@ -198,6 +201,11 @@ class ChatGLMPipelineForwards:
all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
start_idx, end_idx = stage_index[0], stage_index[1]
if shard_config.enable_sequence_parallelism:
hidden_states = split_forward_gather_backward(hidden_states,
dim=0,
process_group=shard_config.tensor_parallel_process_group)
for idx in range(start_idx, end_idx):
layer = self.encoder._get_layer(idx)
if output_hidden_states:
@@ -214,6 +222,11 @@ class ChatGLMPipelineForwards:
hidden_states, kv_cache = layer_ret
if use_cache:
presents = presents + (kv_cache,)
if shard_config.enable_sequence_parallelism:
hidden_states = gather_forward_split_backward(hidden_states,
dim=0,
process_group=shard_config.tensor_parallel_process_group)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if stage_manager.is_last_stage():
@@ -233,23 +246,22 @@ class ChatGLMPipelineForwards:
return {'hidden_states': hidden_states}
@staticmethod
def chatglm_for_conditional_generation_forward(
self: ChatGLMForConditionalGeneration,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
):
def chatglm_for_conditional_generation_forward(self: ChatGLMForConditionalGeneration,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None):
logger = logging.get_logger(__name__)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
@@ -266,6 +278,7 @@ class ChatGLMPipelineForwards:
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
shard_config=shard_config,
)
if stage_manager.is_last_stage():
hidden_states = transformer_outputs[0]
@@ -296,3 +309,91 @@ class ChatGLMPipelineForwards:
)
else:
return transformer_outputs
def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
def forward(
self,
input_ids,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
full_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
batch_size, seq_length = input_ids.shape
if inputs_embeds is None:
inputs_embeds = self.embedding(input_ids)
if self.pre_seq_len is not None:
if past_key_values is None:
past_key_values = self.get_prompt(
batch_size=batch_size,
device=input_ids.device,
dtype=inputs_embeds.dtype,
)
if attention_mask is not None:
attention_mask = torch.cat(
[
attention_mask.new_ones((batch_size, self.pre_seq_len)),
attention_mask,
],
dim=-1,
)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
# Rotary positional embeddings
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
# Run encoder.
# [seq_len, batch_size, hidden_size] -> [seq_len/TP_size, batch_size, hidden_size]
inputs_embeds = split_forward_gather_backward(inputs_embeds,
dim=0,
process_group=shard_config.tensor_parallel_process_group)
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds,
full_attention_mask,
rotary_pos_emb=rotary_pos_emb,
kv_caches=past_key_values,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
)
hidden_states = gather_forward_split_backward(hidden_states,
dim=0,
process_group=shard_config.tensor_parallel_process_group)
if not return_dict:
return tuple(v for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
return forward