Feature/zero (#279)

* add zero1 (#209)

* add zero1

* add test zero1

* update zero stage 1 develop (#212)

* Implement naive zero3 (#240)

* naive zero3 works well

* add zero3 param manager

* add TODOs in comments

* add gather full param ctx

* fix sub module streams

* add offload

* fix bugs of hook and add unit tests

* fix bugs of hook and add unit tests (#252)

* add gather full param ctx

* fix sub module streams

* add offload

* fix bugs of hook and add unit tests

* polish code and add state dict hook

* fix bug

* update unit test

* refactor reconstructed zero code

* clip_grad support zero3 and add unit test

* add unit test for Zero3ParameterManager

* [WIP] initialize the shard param class

* [WIP] Yet another sharded model implementation (#274)

* [WIP] initialize the shard param class

* [WIP] Yes another implementation of shardModel. Using a better hook method.

* torch.concat -> torch.cat

* fix test_zero_level_1.py::test_zero_level_1 unitest

* remove deepspeed implementation and refactor for the reconstructed zero module

* polish zero dp unittests

Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
This commit is contained in:
Jiarui Fang
2022-03-01 18:17:01 +08:00
committed by Frank Lee
parent 08eccfe681
commit 5a560a060a
40 changed files with 3912 additions and 6493 deletions

View File

@@ -13,4 +13,4 @@ class ZeROGradientHandler(BaseGradientHandler):
def handle_gradient(self):
"""A method running a all-reduce operation in a data parallel group.
"""
self._optimizer.allreduce_gradients()
self._optimizer.sync_grad()

View File

@@ -1,9 +1,10 @@
from ._base_ophook import BaseOpHook
from ._memtracer_ophook import MemTracerOpHook
from ._shard_param_ophook import ShardParamHook
import torch
from typing import List
all = ["BaseOpHook", "MemTracerOpHook", "register_ophooks_recursively"]
all = ["BaseOpHook", "MemTracerOpHook", "register_ophooks_recursively", "ShardParamHook"]
# apply torch.autograd.Function that calls a backward_function to tensors in output

View File

@@ -4,7 +4,6 @@ from concurrent.futures import ThreadPoolExecutor
from colossalai.registry import OPHOOKS
from colossalai.logging import get_dist_logger
from time import sleep, time
import psutil
import pickle

View File

@@ -0,0 +1,41 @@
import torch
from . import BaseOpHook
from colossalai.registry import OPHOOKS
@OPHOOKS.register_module
class ShardParamHook(BaseOpHook):
"""
A hook to process sharded param before and afther FWD and BWD operator executing.
"""
def __init__(self):
super().__init__()
def niter(self):
return self._niter
def pre_fwd_exec(self, module: torch.nn.Module, *args):
for param in module.parameters():
assert hasattr(param, 'ca_attr')
param.ca_attr.gather()
def post_fwd_exec(self, module: torch.nn.Module, *args):
for param in module.parameters():
assert hasattr(param, 'ca_attr')
param.ca_attr.shard()
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
for param in module.parameters():
assert hasattr(param, 'ca_attr')
param.ca_attr.gather()
def post_bwd_exec(self, module: torch.nn.Module, input):
for param in module.parameters():
assert hasattr(param, 'ca_attr')
param.ca_attr.shard()
def pre_iter(self):
pass
def post_iter(self):
pass

View File

@@ -12,8 +12,7 @@ from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.utils import switch_virtual_pipeline_parallel_rank
from colossalai.utils.cuda import get_current_device
from colossalai.zero import (ZeroRedundancyOptimizer_Level_2,
ZeroRedundancyOptimizer_Level_3)
from colossalai.zero import ShardedOptimizer, ShardedModel
from ._base_schedule import BaseSchedule
@@ -91,9 +90,10 @@ class PipelineSchedule(BaseSchedule):
return self._move_to_device(data), self._move_to_device(label)
def pre_processing(self, engine):
if isinstance(engine.optimizer, (ZeroRedundancyOptimizer_Level_2, ZeroRedundancyOptimizer_Level_3)):
# TODO: remove this after testing new zero with pipeline parallelism
if isinstance(engine.optimizer, ShardedOptimizer) or isinstance(engine.model, ShardedModel):
raise TypeError(
"Pipeline schedule is currently not compatible with ZeRO Level 2 and Level 3"
"Pipeline schedule is currently not compatible with ZeRO"
)
model = engine.model
if isinstance(model, NaiveAMPModel):