mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 11:02:05 +00:00
Feature/zero (#279)
* add zero1 (#209) * add zero1 * add test zero1 * update zero stage 1 develop (#212) * Implement naive zero3 (#240) * naive zero3 works well * add zero3 param manager * add TODOs in comments * add gather full param ctx * fix sub module streams * add offload * fix bugs of hook and add unit tests * fix bugs of hook and add unit tests (#252) * add gather full param ctx * fix sub module streams * add offload * fix bugs of hook and add unit tests * polish code and add state dict hook * fix bug * update unit test * refactor reconstructed zero code * clip_grad support zero3 and add unit test * add unit test for Zero3ParameterManager * [WIP] initialize the shard param class * [WIP] Yet another sharded model implementation (#274) * [WIP] initialize the shard param class * [WIP] Yes another implementation of shardModel. Using a better hook method. * torch.concat -> torch.cat * fix test_zero_level_1.py::test_zero_level_1 unitest * remove deepspeed implementation and refactor for the reconstructed zero module * polish zero dp unittests Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com>
This commit is contained in:
@@ -2,30 +2,31 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import argparse
|
||||
import pprint
|
||||
import os
|
||||
from colossalai.nn.optimizer.colossalai_optimizer import ColossalaiOptimizer
|
||||
import pprint
|
||||
from pathlib import Path
|
||||
from typing import Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Iterable, Union, Optional, Tuple, List, Dict
|
||||
|
||||
from colossalai.amp import convert_to_amp, AMP_TYPE
|
||||
from colossalai.context import Config, ParallelMode, ConfigException
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.engine import Engine
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import (accumulate_gradient, get_current_device,
|
||||
sync_model_param, is_using_ddp, is_using_pp, is_using_sequence)
|
||||
from colossalai.zero import convert_to_zero, ZeroRedundancyOptimizer_Level_2, ZeroRedundancyOptimizer_Level_3
|
||||
from colossalai.builder.builder import build_gradient_handler
|
||||
from torch.optim.optimizer import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.nn.modules.loss import _Loss
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
from torch.optim.optimizer import Optimizer
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from colossalai.amp import AMP_TYPE, convert_to_amp
|
||||
from colossalai.builder.builder import build_gradient_handler
|
||||
from colossalai.context import Config, ConfigException, ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.engine import Engine
|
||||
from colossalai.global_variables import moe_env
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.nn.optimizer.colossalai_optimizer import ColossalaiOptimizer
|
||||
from colossalai.utils import (accumulate_gradient, get_current_device,
|
||||
is_using_ddp, is_using_pp, is_using_sequence,
|
||||
sync_model_param)
|
||||
from colossalai.zero import convert_to_zero, ShardedOptimizer
|
||||
|
||||
|
||||
def get_default_parser():
|
||||
@@ -332,8 +333,7 @@ def initialize(model: Union[nn.Module, List[nn.Module]],
|
||||
# 1. if optimizer is ZERO, then use zero grad handler
|
||||
# 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp
|
||||
# 3. if using pipeline and dp size larger than 1, use data parallel grad handler
|
||||
if isinstance(optimizer, (ZeroRedundancyOptimizer_Level_2,
|
||||
ZeroRedundancyOptimizer_Level_3)):
|
||||
if isinstance(optimizer, ShardedOptimizer):
|
||||
gradient_handler_cfg = [dict(type='ZeROGradientHandler')]
|
||||
if verbose:
|
||||
logger.info(
|
||||
@@ -348,7 +348,8 @@ def initialize(model: Union[nn.Module, List[nn.Module]],
|
||||
"added even though not specified in the configuration",
|
||||
ranks=[0])
|
||||
elif is_using_sequence():
|
||||
model = DDP(model, process_group=gpc.get_group(ParallelMode.SEQUENCE_DP), device_ids=[torch.cuda.current_device()])
|
||||
model = DDP(model, process_group=gpc.get_group(ParallelMode.SEQUENCE_DP),
|
||||
device_ids=[torch.cuda.current_device()])
|
||||
if verbose:
|
||||
logger.info(
|
||||
'Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism', ranks=[0])
|
||||
@@ -393,7 +394,7 @@ def initialize(model: Union[nn.Module, List[nn.Module]],
|
||||
gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg]
|
||||
|
||||
# check if optimizer is ColossalaiOptimizer
|
||||
if not isinstance(optimizer, (ColossalaiOptimizer, ZeroRedundancyOptimizer_Level_2, ZeroRedundancyOptimizer_Level_3)):
|
||||
if not isinstance(optimizer, (ColossalaiOptimizer, ShardedOptimizer)):
|
||||
optimizer = ColossalaiOptimizer(optim=optimizer)
|
||||
|
||||
# gradient accumulation
|
||||
|
Reference in New Issue
Block a user