Feature/zero (#279)

* add zero1 (#209)

* add zero1

* add test zero1

* update zero stage 1 develop (#212)

* Implement naive zero3 (#240)

* naive zero3 works well

* add zero3 param manager

* add TODOs in comments

* add gather full param ctx

* fix sub module streams

* add offload

* fix bugs of hook and add unit tests

* fix bugs of hook and add unit tests (#252)

* add gather full param ctx

* fix sub module streams

* add offload

* fix bugs of hook and add unit tests

* polish code and add state dict hook

* fix bug

* update unit test

* refactor reconstructed zero code

* clip_grad support zero3 and add unit test

* add unit test for Zero3ParameterManager

* [WIP] initialize the shard param class

* [WIP] Yet another sharded model implementation (#274)

* [WIP] initialize the shard param class

* [WIP] Yes another implementation of shardModel. Using a better hook method.

* torch.concat -> torch.cat

* fix test_zero_level_1.py::test_zero_level_1 unitest

* remove deepspeed implementation and refactor for the reconstructed zero module

* polish zero dp unittests

Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
This commit is contained in:
Jiarui Fang
2022-03-01 18:17:01 +08:00
committed by Frank Lee
parent 08eccfe681
commit 5a560a060a
40 changed files with 3912 additions and 6493 deletions

View File

@@ -1,9 +1,13 @@
from .activation_checkpoint import checkpoint
from .common import (clip_grad_norm_fp32, conditional_context, copy_tensor_parallel_attributes, count_zeros_fp32,
free_port, is_dp_rank_0, is_model_parallel_parameter, is_no_pp_or_last_stage, is_tp_rank_0,
is_using_ddp, is_using_pp, is_using_sequence, model_branch_context, multi_tensor_applier,
param_is_not_tensor_parallel_duplicate, print_rank_0, switch_virtual_pipeline_parallel_rank,
sync_model_param)
from .common import (clip_grad_norm_fp32, conditional_context,
copy_tensor_parallel_attributes, count_zeros_fp32,
free_port, is_dp_rank_0, is_model_parallel_parameter,
is_moe_parallel_parameter, is_no_pp_or_last_stage,
is_tp_rank_0, is_using_ddp, is_using_pp,
is_using_sequence, multi_tensor_applier,
param_is_not_tensor_parallel_duplicate, print_rank_0,
switch_virtual_pipeline_parallel_rank, sync_model_param)
from .cuda import empty_cache, get_current_device, set_to_cuda, synchronize
from .data_sampler import DataParallelSampler, get_dataloader
from .gradient_accumulation import accumulate_gradient
@@ -12,9 +16,9 @@ from .timer import MultiTimer, Timer
__all__ = [
'checkpoint', 'free_port', 'print_rank_0', 'sync_model_param', 'is_dp_rank_0', 'is_tp_rank_0',
'is_no_pp_or_last_stage', 'is_using_ddp', 'is_using_pp', 'is_using_sequence', 'model_branch_context',
'conditional_context', 'is_model_parallel_parameter', 'clip_grad_norm_fp32', 'count_zeros_fp32',
'copy_tensor_parallel_attributes', 'param_is_not_tensor_parallel_duplicate', 'get_current_device', 'synchronize',
'empty_cache', 'set_to_cuda', 'report_memory_usage', 'Timer', 'MultiTimer', 'multi_tensor_applier',
'accumulate_gradient', 'DataParallelSampler', 'get_dataloader', 'switch_virtual_pipeline_parallel_rank'
'is_no_pp_or_last_stage', 'is_using_ddp', 'is_using_pp', 'is_using_sequence', 'conditional_context',
'is_model_parallel_parameter', 'clip_grad_norm_fp32', 'count_zeros_fp32', 'copy_tensor_parallel_attributes',
'param_is_not_tensor_parallel_duplicate', 'get_current_device', 'synchronize', 'empty_cache', 'set_to_cuda',
'report_memory_usage', 'Timer', 'MultiTimer', 'multi_tensor_applier', 'accumulate_gradient', 'DataParallelSampler',
'get_dataloader', 'switch_virtual_pipeline_parallel_rank', 'is_moe_parallel_parameter'
]