mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 03:52:01 +00:00
[pipeline/rpc] update outstanding mechanism | optimize dispatching strategy (#1497)
* support p2p communication with any type of object | pass test * reconstruct pipeline schedule with p2p_v2.py(support communication with List[Any]) | pass test * [engin/schedule] use p2p_v2 to recontruct pipeline_schedule * [pipeline/rpc] implement a demo for PP with cuda rpc framework * [pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B * [pipeline/rpc] implement distributed optimizer | test with assert_close * [pipeline/rpc] implement distributed optimizer | test with assert_close * [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy * [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy * [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy
This commit is contained in:
@@ -5,13 +5,9 @@ import torch
|
||||
from torch import nn
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed.rpc as rpc
|
||||
from torch import autograd
|
||||
from torch.optim import SGD, Adam, RMSprop, Optimizer
|
||||
from colorama import Back, Style
|
||||
|
||||
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
|
||||
from colossalai.testing import assert_close
|
||||
|
||||
|
||||
def color_debug(text, prefix=' ', color='blue'):
|
||||
color = color.upper()
|
||||
@@ -43,13 +39,13 @@ class RpcTestModel(nn.Module):
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--epoch', type=int, default=1)
|
||||
parser.add_argument('--world_size', type=int, default=2)
|
||||
parser.add_argument('--num_microbatches', type=int, default=2)
|
||||
parser.add_argument('--chunk', type=int, default=1)
|
||||
parser.add_argument('--use_checkpoint', action='store_true')
|
||||
parser.add_argument('--use_interleave', action='store_true')
|
||||
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD')
|
||||
parser.add_argument('--device', type=str, default='cuda')
|
||||
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
|
||||
parser.add_argument('--master_addr', type=str, default='localhost')
|
||||
parser.add_argument('--master_port', type=str, default='29020')
|
||||
parser.add_argument('--num_worker_threads', type=str, default=128)
|
||||
|
@@ -1,13 +1,7 @@
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed.rpc as rpc
|
||||
from torch import autograd
|
||||
from torch.optim import SGD, Adam, RMSprop, Optimizer
|
||||
from colorama import Back, Style
|
||||
|
||||
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
|
||||
from colossalai.testing import assert_close
|
||||
@@ -21,7 +15,6 @@ def run_master(args):
|
||||
stage_num = args.world_size
|
||||
chunk = args.chunk
|
||||
actual_stage_num = stage_num * chunk
|
||||
use_interleave = args.use_interleave
|
||||
use_checkpoint = args.use_checkpoint
|
||||
num_microbatches = args.num_microbatches
|
||||
optimizer_class = globals()[args.optimizer]
|
||||
@@ -45,7 +38,6 @@ def run_master(args):
|
||||
num_microbatches=num_microbatches,
|
||||
device=device,
|
||||
chunk=chunk,
|
||||
use_interleave=use_interleave,
|
||||
checkpoint=use_checkpoint)
|
||||
|
||||
engine.initialize_optimizer(optimizer_class, lr=lr)
|
||||
|
@@ -1,10 +1,5 @@
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed.rpc as rpc
|
||||
|
||||
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
|
||||
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
|
||||
@@ -13,12 +8,12 @@ from rpc_test_utils import rpc_run, parse_args, RpcTestModel
|
||||
def run_master(args):
|
||||
torch.manual_seed(100)
|
||||
|
||||
epoch = args.epoch
|
||||
device = args.device
|
||||
stage_num = args.world_size
|
||||
chunk = args.chunk
|
||||
num_microbatches = args.num_microbatches
|
||||
actual_stage_num = stage_num * chunk
|
||||
use_interleave = args.use_interleave
|
||||
use_checkpoint = args.use_checkpoint
|
||||
|
||||
sample_num = 1024
|
||||
@@ -38,10 +33,10 @@ def run_master(args):
|
||||
num_microbatches=num_microbatches,
|
||||
device=device,
|
||||
chunk=chunk,
|
||||
use_interleave=use_interleave,
|
||||
checkpoint=use_checkpoint)
|
||||
|
||||
_ = engine.forward_backward(input_sample)
|
||||
for _ in range(epoch):
|
||||
_ = engine.forward_backward(input_sample, forward_only=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@@ -1,12 +1,6 @@
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed.rpc as rpc
|
||||
from torch import autograd
|
||||
from colorama import Back, Style
|
||||
|
||||
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
|
||||
from colossalai.testing import assert_close
|
||||
@@ -20,7 +14,6 @@ def run_master(args):
|
||||
stage_num = args.world_size
|
||||
chunk = args.chunk
|
||||
actual_stage_num = stage_num * chunk
|
||||
use_interleave = args.use_interleave
|
||||
use_checkpoint = args.use_checkpoint
|
||||
num_microbatches = args.num_microbatches
|
||||
|
||||
@@ -41,7 +34,6 @@ def run_master(args):
|
||||
num_microbatches=num_microbatches,
|
||||
device=device,
|
||||
chunk=chunk,
|
||||
use_interleave=use_interleave,
|
||||
checkpoint=use_checkpoint)
|
||||
|
||||
forward_result = engine.forward_backward(input_sample)
|
||||
|
Reference in New Issue
Block a user