mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-12-03 04:13:20 +00:00
[pipeline/rpc] update outstanding mechanism | optimize dispatching strategy (#1497)
* support p2p communication with any type of object | pass test * reconstruct pipeline schedule with p2p_v2.py(support communication with List[Any]) | pass test * [engin/schedule] use p2p_v2 to recontruct pipeline_schedule * [pipeline/rpc] implement a demo for PP with cuda rpc framework * [pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B * [pipeline/rpc] implement distributed optimizer | test with assert_close * [pipeline/rpc] implement distributed optimizer | test with assert_close * [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy * [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy * [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy
This commit is contained in:
@@ -1,13 +1,7 @@
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.multiprocessing as mp
|
||||
import torch.distributed.rpc as rpc
|
||||
from torch import autograd
|
||||
from torch.optim import SGD, Adam, RMSprop, Optimizer
|
||||
from colorama import Back, Style
|
||||
|
||||
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
|
||||
from colossalai.testing import assert_close
|
||||
@@ -21,7 +15,6 @@ def run_master(args):
|
||||
stage_num = args.world_size
|
||||
chunk = args.chunk
|
||||
actual_stage_num = stage_num * chunk
|
||||
use_interleave = args.use_interleave
|
||||
use_checkpoint = args.use_checkpoint
|
||||
num_microbatches = args.num_microbatches
|
||||
optimizer_class = globals()[args.optimizer]
|
||||
@@ -45,7 +38,6 @@ def run_master(args):
|
||||
num_microbatches=num_microbatches,
|
||||
device=device,
|
||||
chunk=chunk,
|
||||
use_interleave=use_interleave,
|
||||
checkpoint=use_checkpoint)
|
||||
|
||||
engine.initialize_optimizer(optimizer_class, lr=lr)
|
||||
|
||||
Reference in New Issue
Block a user