mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 04:24:47 +00:00
[kernel] Add RMSLayerNorm triton kernel (#5262)
* add layerrmsnorm triton kernel * add layerrmsnorm kernel * modify the atol and rtol in test file * Remove the logics of mean computations, and update the name of ther kernel functions and files * add benchmark of rms norm
This commit is contained in:
71
colossalai/kernel/triton/rms_layernorm.py
Normal file
71
colossalai/kernel/triton/rms_layernorm.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import torch
|
||||
|
||||
try:
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
HAS_TRITON = True
|
||||
except ImportError:
|
||||
HAS_TRITON = False
|
||||
print("please install triton from https://github.com/openai/triton")
|
||||
|
||||
if HAS_TRITON:
|
||||
# CREDITS: These functions are adapted from the Triton tutorial
|
||||
# https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
||||
|
||||
@triton.jit
|
||||
def _rmsnorm_kernel(
|
||||
X, # pointer to the input
|
||||
Y, # pointer to the output
|
||||
W, # pointer to the weights
|
||||
stride, # how much to increase the pointer when moving by 1 row
|
||||
N, # number of columns in X
|
||||
eps, # epsilon to avoid division by zero
|
||||
BLOCK_SIZE: tl.constexpr,
|
||||
):
|
||||
|
||||
# This triton kernel implements Root Mean Square Layer Norm (RMSNorm).
|
||||
|
||||
# Map the program id to the row of X and Y it should compute.
|
||||
row = tl.program_id(0)
|
||||
Y += row * stride
|
||||
X += row * stride
|
||||
# Compute variance
|
||||
_var = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
|
||||
for off in range(0, N, BLOCK_SIZE):
|
||||
cols = off + tl.arange(0, BLOCK_SIZE)
|
||||
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
||||
x = tl.where(cols < N, x, 0.0)
|
||||
_var += x * x
|
||||
var = tl.sum(_var, axis=0) / N
|
||||
rstd = 1 / tl.sqrt(var + eps)
|
||||
# Normalize and apply linear transformation
|
||||
for off in range(0, N, BLOCK_SIZE):
|
||||
cols = off + tl.arange(0, BLOCK_SIZE)
|
||||
mask = cols < N
|
||||
w = tl.load(W + cols, mask=mask)
|
||||
x = tl.load(X + cols, mask=mask, other=0.0).to(tl.float32)
|
||||
x_hat = x * rstd
|
||||
y = x_hat * w
|
||||
# Write output
|
||||
tl.store(Y + cols, y.to(tl.float16), mask=mask)
|
||||
|
||||
@torch.no_grad()
|
||||
def rms_layernorm(x, weight, eps):
|
||||
# allocate output
|
||||
y = torch.empty_like(x)
|
||||
# reshape input data into 2D tensor
|
||||
x_arg = x.reshape(-1, x.shape[-1])
|
||||
M, N = x_arg.shape
|
||||
# Less than 64KB per feature: enqueue fused kernel
|
||||
MAX_FUSED_SIZE = 65536 // x.element_size()
|
||||
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
||||
if N > BLOCK_SIZE:
|
||||
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
||||
# heuristics for number of warps
|
||||
num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
|
||||
# enqueue kernel
|
||||
_rmsnorm_kernel[(M,)](
|
||||
x_arg, y, weight, x_arg.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps
|
||||
)
|
||||
return y
|
Reference in New Issue
Block a user