mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 01:06:00 +00:00
[kernel] Support new KCache Layout - Context Attention Triton Kernel (#5658)
* add context attn triton kernel - new kcache layout * add benchmark triton * tiny revise * trivial - code style, comment
This commit is contained in:
@@ -24,9 +24,9 @@ configs = [
|
||||
x_vals=[2**i for i in range(8, 13)],
|
||||
# x_vals=[x for x in range(256, 8192, 256)],
|
||||
line_arg="provider",
|
||||
line_vals=["torch", "triton"],
|
||||
line_names=["Torch", "Triton"],
|
||||
styles=[("red", "-"), ("blue", "-")],
|
||||
line_vals=["torch", "triton", "triton_new_klayout"],
|
||||
line_names=["Torch", "Triton", "Triton_new_klayout"],
|
||||
styles=[("red", "-"), ("blue", "-"), ("green", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"context_attn-block_size-{BLOCK_SIZE}-batch{BATCH}",
|
||||
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
|
||||
@@ -98,13 +98,33 @@ def bench_kernel(
|
||||
HEAD_DIM,
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
||||
if provider == "triton":
|
||||
elif provider == "triton":
|
||||
k_cache_triton = torch.zeros_like(k_cache_ref)
|
||||
v_cache_triton = torch.zeros_like(v_cache_ref)
|
||||
fn = lambda: context_attention_unpadded(
|
||||
q_unpad, k_unpad, v_unpad, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
||||
elif provider == "triton_new_klayout":
|
||||
# NOTE New kcache layout (num_blocks, num_kv_heads, head_dim // x, block_size, x)
|
||||
# to be applied around the cuda and triton kernels.
|
||||
# Here we want to make sure it does not cause downgrade in performance.
|
||||
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
||||
k_cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, HEAD_DIM // x, block_size, x)
|
||||
k_cache_triton = torch.zeros(size=k_cache_shape, dtype=dtype, device=device)
|
||||
v_cache_triton = torch.zeros_like(v_cache_ref)
|
||||
fn = lambda: context_attention_unpadded(
|
||||
q_unpad,
|
||||
k_unpad,
|
||||
v_unpad,
|
||||
k_cache_triton,
|
||||
v_cache_triton,
|
||||
context_lengths,
|
||||
block_tables,
|
||||
block_size,
|
||||
use_new_kcache_layout=True,
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
||||
|
||||
return ms, min_ms, max_ms
|
||||
|
||||
|
Reference in New Issue
Block a user