mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 05:01:44 +00:00
[test] Hotfix/fix some model test and refactor check util api (#4369)
* fix llama test * fix test bug of bert, blip2, bloom, gpt2 * fix llama test * fix opt test * fix sam test * fix sam test * fix t5 test * fix vit test * fix whisper test * fix whisper test * polish code * adjust allclose parameter * Add mistakenly deleted code * addjust allclose * change loss function for some base model
This commit is contained in:
@@ -102,7 +102,7 @@ def data_gen_for_qa():
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss funciton
|
||||
loss_fn_for_bert_model = lambda x: x.pooler_output.mean()
|
||||
loss_fn_for_bert_model = lambda x: x.pooler_output.sum()
|
||||
loss_fn = lambda x: x.loss
|
||||
|
||||
config = transformers.BertConfig(hidden_size=128,
|
||||
|
@@ -55,17 +55,23 @@ def data_gen_for_question_answering():
|
||||
input_ids = torch.tensor(
|
||||
[[57647, 1620, 23967, 620, 107373, 34, 91514, 620, 107373, 1620, 267, 35378, 48946, 18161]], dtype=torch.int64)
|
||||
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
start_positions = torch.tensor([1], dtype=torch.int64)
|
||||
end_positions = torch.tensor([10], dtype=torch.int64)
|
||||
return dict(input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
start_positions=start_positions,
|
||||
end_positions=end_positions)
|
||||
|
||||
|
||||
# define output transform function
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss function
|
||||
loss_fn_for_bloom_model = lambda x: x.last_hidden_state.mean()
|
||||
loss_fn_for_bloom_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state,
|
||||
torch.ones_like(x.last_hidden_state))
|
||||
loss_fn_for_causal_lm = lambda x: x.loss
|
||||
loss_fn_for_classification = lambda x: x.logits.mean()
|
||||
loss_fn_for_question_answering = lambda x: x.end_logits.mean()
|
||||
loss_fn_for_classification = lambda x: x.loss
|
||||
loss_fn_for_question_answering = lambda x: x.loss
|
||||
|
||||
config = transformers.BloomConfig(n_layer=1,
|
||||
n_head=4,
|
||||
|
@@ -1,3 +1,5 @@
|
||||
import copy
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
@@ -44,14 +46,14 @@ def data_gen_for_token_classification():
|
||||
# token classification data gen
|
||||
# `labels` is the type not the token id for token classification, 0 or 1
|
||||
data = data_gen()
|
||||
data['labels'] = torch.tensor([[0, 0, 0, 0, 0, 0]], dtype=torch.int64)
|
||||
data['labels'] = torch.tensor([[0, 0, 0, 0, 0, 1]], dtype=torch.int64)
|
||||
return data
|
||||
|
||||
|
||||
def data_gen_for_sequence_classification():
|
||||
# sequence classification data gen
|
||||
data = data_gen()
|
||||
data['labels'] = torch.tensor([0], dtype=torch.int64)
|
||||
data['labels'] = torch.tensor([1], dtype=torch.int64)
|
||||
return data
|
||||
|
||||
|
||||
@@ -59,7 +61,8 @@ def data_gen_for_sequence_classification():
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss function
|
||||
loss_fn_for_gpt2_model = lambda x: x.last_hidden_state.mean()
|
||||
loss_fn_for_gpt2_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state, torch.ones_like(x.last_hidden_state
|
||||
))
|
||||
loss_fn = lambda x: x.loss
|
||||
|
||||
config = transformers.GPT2Config(n_layer=2,
|
||||
@@ -69,9 +72,10 @@ config = transformers.GPT2Config(n_layer=2,
|
||||
embd_pdrop=0,
|
||||
resid_pdrop=0,
|
||||
summary_first_dropout=0,
|
||||
hidden_dropout=0,
|
||||
problem_type="single_label_classification",
|
||||
pad_token_id=50256)
|
||||
hidden_dropout=0)
|
||||
|
||||
config_for_token_classification = copy.deepcopy(config)
|
||||
config_for_token_classification.num_labels = 2
|
||||
|
||||
# register the following models
|
||||
model_zoo.register(name='transformers_gpt',
|
||||
@@ -99,13 +103,13 @@ model_zoo.register(name='transformers_gpt_for_question_answering',
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_for_token_classification',
|
||||
model_fn=lambda: transformers.GPT2ForTokenClassification(config),
|
||||
model_fn=lambda: transformers.GPT2ForTokenClassification(config_for_token_classification),
|
||||
data_gen_fn=data_gen_for_token_classification,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_for_sequence_classification',
|
||||
model_fn=lambda: transformers.GPT2ForSequenceClassification(config),
|
||||
model_fn=lambda: transformers.GPT2ForSequenceClassification(config_for_token_classification),
|
||||
data_gen_fn=data_gen_for_sequence_classification,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
|
@@ -44,7 +44,8 @@ def data_gen_for_question_answering():
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
loss_fn_for_opt_model = lambda x: x.last_hidden_state.mean()
|
||||
loss_fn_for_opt_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state, torch.ones_like(x.last_hidden_state)
|
||||
)
|
||||
loss_fn_for_lm = lambda x: x.loss
|
||||
config = transformers.OPTConfig(
|
||||
hidden_size=128,
|
||||
|
@@ -22,7 +22,7 @@ def data_gen():
|
||||
# input_features = inputs.input_features
|
||||
# decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
|
||||
|
||||
input_features = torch.randn(1, 80, 3000)
|
||||
input_features = torch.rand(1, 80, 3000)
|
||||
decoder_input_ids = torch.tensor([[1, 1]]) * 50258
|
||||
return dict(input_features=input_features, decoder_input_ids=decoder_input_ids)
|
||||
|
||||
@@ -53,7 +53,7 @@ def data_gen_for_audio_classification():
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# define loss funciton
|
||||
loss_fn = lambda x: x.last_hidden_state.mean()
|
||||
loss_fn = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state, torch.ones_like(x.last_hidden_state))
|
||||
loss_fn_attr = lambda x: x.loss
|
||||
|
||||
config = transformers.WhisperConfig(
|
||||
|
Reference in New Issue
Block a user