mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[test] Hotfix/fix some model test and refactor check util api (#4369)
* fix llama test * fix test bug of bert, blip2, bloom, gpt2 * fix llama test * fix opt test * fix sam test * fix sam test * fix t5 test * fix vit test * fix whisper test * fix whisper test * polish code * adjust allclose parameter * Add mistakenly deleted code * addjust allclose * change loss function for some base model
This commit is contained in:
@@ -6,7 +6,6 @@ import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
|
||||
from colossalai.testing import (
|
||||
assert_hf_output_close,
|
||||
clear_cache_before_run,
|
||||
@@ -15,7 +14,7 @@ from colossalai.testing import (
|
||||
spawn,
|
||||
)
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import build_model, check_state_dict, run_forward
|
||||
from tests.test_shardformer.test_model._utils import build_model, check_grad, check_state_dict, run_forward
|
||||
|
||||
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||||
|
||||
@@ -23,7 +22,7 @@ os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||||
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
||||
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
|
||||
output_transform_fn, loss_fn)
|
||||
assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'], rtol=1e-4)
|
||||
assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'], rtol=1e-5)
|
||||
|
||||
# run backward
|
||||
org_loss.backward()
|
||||
@@ -40,33 +39,11 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
|
||||
opt_model = org_model
|
||||
shard_opt_model = sharded_model
|
||||
|
||||
# check attention grad
|
||||
org_grad = opt_model.decoder.layers[0].self_attn.q_proj.weight.grad
|
||||
shard_grad = shard_opt_model.decoder.layers[0].self_attn.q_proj.weight.grad
|
||||
shard_weight = shard_opt_model.decoder.layers[0].self_attn.q_proj.weight
|
||||
|
||||
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
||||
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
|
||||
torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||||
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||||
else:
|
||||
all_shard_grad = shard_grad
|
||||
assert torch.allclose(org_grad, all_shard_grad,
|
||||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
|
||||
|
||||
# check embedding grad
|
||||
org_grad = opt_model.decoder.embed_tokens.weight.grad
|
||||
shard_grad = shard_opt_model.decoder.embed_tokens.weight.grad
|
||||
shard_weight = shard_opt_model.decoder.embed_tokens.weight
|
||||
|
||||
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
|
||||
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
|
||||
torch.distributed.all_gather(shard_grad_list, shard_grad)
|
||||
all_shard_grad = torch.cat(shard_grad_list, dim=0)
|
||||
else:
|
||||
all_shard_grad = shard_grad
|
||||
assert torch.allclose(org_grad, all_shard_grad,
|
||||
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
|
||||
# check grad
|
||||
col_layer_for_check = ['decoder.layers[0].self_attn.q_proj', 'decoder.embed_tokens']
|
||||
row_layer_for_check = ['decoder.layers[0].self_attn.out_proj']
|
||||
check_grad(opt_model, shard_opt_model, col_layer_for_check, atol=1e-7, rtol=1e-3, dim=0, verbose=False)
|
||||
check_grad(opt_model, shard_opt_model, row_layer_for_check, atol=1e-7, rtol=1e-3, dim=1, verbose=False)
|
||||
|
||||
|
||||
@parameterize('enable_fused_normalization', [True, False])
|
||||
|
Reference in New Issue
Block a user