[test] Hotfix/fix some model test and refactor check util api (#4369)

* fix llama test

* fix test bug of bert, blip2, bloom, gpt2

* fix llama test

* fix opt test

* fix sam test

* fix sam test

* fix t5 test

* fix vit test

* fix whisper test

* fix whisper test

* polish code

* adjust allclose parameter

* Add mistakenly deleted code

* addjust allclose

* change loss function for some base model
This commit is contained in:
Bin Jia
2023-08-03 14:51:36 +08:00
committed by Hongxin Liu
parent c3ca53cf05
commit 5c6f183192
16 changed files with 135 additions and 336 deletions

View File

@@ -3,7 +3,6 @@ import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
@@ -12,14 +11,14 @@ from colossalai.testing import (
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, run_forward
from tests.test_shardformer.test_model._utils import build_model, check_grad, run_forward
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
# check forward
org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn,
output_transform_fn, loss_fn)
assert_hf_output_close(org_output, shard_output, ignore_keys='past_key_values')
assert_hf_output_close(org_output, shard_output, ignore_keys='past_key_values', atol=1e-5)
# do backward
org_loss.backward()
@@ -28,8 +27,7 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
# check grad
# unwarp the model
if org_model.__class__.__name__ == 'WhisperForConditionalGeneration':
whisper = org_model.model
sharded_whisper = sharded_model.model
@@ -37,38 +35,15 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
whisper = org_model
sharded_whisper = sharded_model
# compare self attention grad
org_grad = whisper.encoder.layers[0].self_attn.q_proj.weight.grad
shard_grad = sharded_whisper.encoder.layers[0].self_attn.q_proj.weight.grad
shard_weight = sharded_whisper.encoder.layers[0].self_attn.q_proj.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
# WhisperForAudioClassification does not have decoder and embedding layer
# check grad
if org_model.__class__.__name__ == 'WhisperForAudioClassification':
return
# compare embedding grad
org_grad = whisper.decoder.embed_tokens.weight.grad
shard_grad = sharded_whisper.decoder.embed_tokens.weight.grad
shard_weight = sharded_whisper.decoder.embed_tokens.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
col_layer_for_check = ['encoder.layers[0].self_attn.q_proj']
row_layer_for_check = ['encoder.layers[0].self_attn.out_proj']
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
col_layer_for_check = ['encoder.layers[0].self_attn.q_proj', 'decoder.layers[0].self_attn.q_proj']
row_layer_for_check = ['encoder.layers[0].self_attn.out_proj', 'decoder.layers[0].self_attn.out_proj']
check_grad(whisper, sharded_whisper, col_layer_for_check, atol=1e-6, rtol=1e-5, dim=0, verbose=False)
check_grad(whisper, sharded_whisper, row_layer_for_check, atol=1e-6, rtol=1e-5, dim=1, verbose=False)
@parameterize('enable_fused_normalization', [True, False])